File size: 9,541 Bytes
527ed9f 2b3faac 527ed9f 2b3faac 527ed9f 2b3faac 527ed9f 2b3faac 527ed9f 2b3faac 527ed9f 2b3faac 527ed9f 2b3faac 527ed9f 2b3faac 527ed9f 2b3faac 527ed9f 2b3faac 527ed9f 2b3faac 527ed9f 2b3faac 527ed9f 2b3faac 527ed9f 2b3faac 527ed9f 2b3faac 527ed9f 2b3faac 527ed9f 2b3faac 527ed9f 2b3faac 527ed9f 2b3faac 527ed9f 2b3faac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
"""
Copyright [2022] [Paul-Edouard Sarlin and Philipp Lindenberger]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
3D visualization based on plotly.
Works for a small number of points and cameras, might be slow otherwise.
1) Initialize a figure with `init_figure`
2) Add 3D points, camera frustums, or both as a pycolmap.Reconstruction
Written by Paul-Edouard Sarlin and Philipp Lindenberger.
Slightly modified by Dmytro Mishkin
"""
from typing import Optional
import numpy as np
import pycolmap
import plotly.graph_objects as go
from hoho2025.color_mappings import edge_color_mapping, EDGE_CLASSES_BY_ID
def to_homogeneous(points):
pad = np.ones((points.shape[:-1]+(1,)), dtype=points.dtype)
return np.concatenate([points, pad], axis=-1)
### Plotting functions
def init_figure(height: int = 800) -> go.Figure:
"""Initialize a 3D figure."""
fig = go.FigureWidget()
axes = dict(
visible=False,
showbackground=False,
showgrid=False,
showline=False,
showticklabels=True,
autorange=True,
)
fig.update_layout(
template="plotly_dark",
height=height,
scene_camera=dict(
eye=dict(x=0., y=-.1, z=-2),
up=dict(x=0, y=-1., z=0),
projection=dict(type="orthographic")),
scene=dict(
xaxis=axes,
yaxis=axes,
zaxis=axes,
aspectmode='data',
dragmode='orbit',
),
margin=dict(l=0, r=0, b=0, t=0, pad=0),
legend=dict(
orientation="h",
yanchor="top",
y=0.99,
xanchor="left",
x=0.1
),
)
return fig
def plot_lines_3d(
fig: go.Figure,
pts: np.ndarray,
color: str = 'rgba(255, 255, 255, 1)',
ps: int = 2,
colorscale: Optional[str] = None,
name: Optional[str] = None):
"""Plot a set of 3D points."""
x = pts[..., 0]
y = pts[..., 1]
z = pts[..., 2]
if isinstance(color, list):
traces = [go.Scatter3d(x=x1, y=y1, z=z1,
mode='lines',
line=dict(color=f"rgb{c}", width=ps)) for x1, y1, z1, c in zip(x,y,z,color)]
else:
traces = [go.Scatter3d(x=x1, y=y1, z=z1,
mode='lines',
line=dict(color=color, width=ps)) for x1, y1, z1 in zip(x,y,z)]
for t in traces:
fig.add_trace(t)
fig.update_traces(showlegend=False)
def plot_points(
fig: go.Figure,
pts: np.ndarray,
color: str = 'rgba(255, 0, 0, 1)',
ps: int = 2,
colorscale: Optional[str] = None,
name: Optional[str] = None):
"""Plot a set of 3D points."""
x, y, z = pts.T
tr = go.Scatter3d(
x=x, y=y, z=z, mode='markers', name=name, legendgroup=name,
marker=dict(
size=ps, color=color, line_width=0.0, colorscale=colorscale))
fig.add_trace(tr)
def plot_camera(
fig: go.Figure,
R: np.ndarray,
t: np.ndarray,
K: np.ndarray,
color: str = 'rgb(0, 0, 255)',
name: Optional[str] = None,
legendgroup: Optional[str] = None,
size: float = 1.0):
"""Plot a camera frustum from pose and intrinsic matrix. R and t are
world_to_camera transformation"""
R = np.array(R)
t = np.array(t).reshape(3)
K = np.array(K)
W, H = K[0, 2]*2, K[1, 2]*2
corners = np.array([[0, 0], [W, 0], [W, H], [0, H], [0, 0]])
if size is not None:
image_extent = max(size * W / 1024.0, size * H / 1024.0)
world_extent = max(W, H) / (K[0, 0] + K[1, 1]) / 0.5
scale = 0.5 * image_extent / world_extent
else:
scale = 1.0
corners = to_homogeneous(corners) @ np.linalg.inv(K).T
corners = (corners / 2 * scale) @ R.T + t
x, y, z = corners.T
rect = go.Scatter3d(
x=x, y=y, z=z, line=dict(color=color), legendgroup=legendgroup,
name=name, marker=dict(size=0.0001), showlegend=False)
fig.add_trace(rect)
x, y, z = np.concatenate(([t], corners)).T
i = [0, 0, 0, 0]
j = [1, 2, 3, 4]
k = [2, 3, 4, 1]
pyramid = go.Mesh3d(
x=x, y=y, z=z, color=color, i=i, j=j, k=k,
legendgroup=legendgroup, name=name, showlegend=False)
fig.add_trace(pyramid)
triangles = np.vstack((i, j, k)).T
vertices = np.concatenate(([t], corners))
tri_points = np.array([
vertices[i] for i in triangles.reshape(-1)
])
x, y, z = tri_points.T
pyramid = go.Scatter3d(
x=x, y=y, z=z, mode='lines', legendgroup=legendgroup,
name=name, line=dict(color=color, width=1), showlegend=False)
fig.add_trace(pyramid)
def plot_camera_colmap(
fig: go.Figure,
image: pycolmap.Image,
camera: pycolmap.Camera,
name: Optional[str] = None,
**kwargs):
"""Plot a camera frustum from PyCOLMAP objects"""
# Use camera intrinsics method if available, otherwise fallback to params
intr = camera.calibration_matrix()
if intr[0][0] > 5000:
print("Bad camera")
return
world_t_camera = image.cam_from_world.inverse()
plot_camera(
fig,
world_t_camera.rotation.matrix(), # Use rotation matrix method (World-to-Camera)
world_t_camera.translation, # Use camera center in world coordinates
intr,
name=name or str(image.name),
**kwargs)
def plot_cameras(
fig: go.Figure,
reconstruction: pycolmap.Reconstruction, # Added type hint
**kwargs):
"""Plot a camera as a cone with camera frustum."""
# Iterate over reconstruction.images
for image_id, image in reconstruction.images.items():
# Access camera using reconstruction.cameras
plot_camera_colmap(
fig, image, reconstruction.cameras[image.camera_id], **kwargs)
def plot_reconstruction(
fig: go.Figure,
rec: pycolmap.Reconstruction, # Added type hint
color: str = 'rgb(0, 0, 255)',
name: Optional[str] = None,
points: bool = True,
cameras: bool = True,
cs: float = 1.0,
single_color_points=False,
camera_color='rgba(0, 255, 0, 0.5)',
crop_outliers: bool = False):
# rec is a pycolmap.Reconstruction object
# Filter outliers
xyzs = []
rgbs = []
# Iterate over rec.points3D
for k, p3D in rec.points3D.items():
#print (p3D)
xyzs.append(p3D.xyz)
rgbs.append(p3D.color)
xyzs = np.array(xyzs)
rgbs = np.array(rgbs)
# Crop outliers if requested
if crop_outliers and len(xyzs) > 0:
# Calculate distances from origin
distances = np.linalg.norm(xyzs, axis=1)
# Find threshold at 98th percentile (removing 2% furthest points)
threshold = np.percentile(distances, 98)
# Filter points
mask = distances <= threshold
xyzs = xyzs[mask]
rgbs = rgbs[mask]
print(f"Cropped outliers: removed {np.sum(~mask)} out of {len(mask)} points ({np.sum(~mask)/len(mask)*100:.2f}%)")
if points and len(xyzs) > 0:
plot_points(fig, xyzs, color=color if single_color_points else rgbs, ps=1, name=name)
if cameras:
plot_cameras(fig, rec, color=camera_color, legendgroup=name, size=cs)
def plot_wireframe(
fig: go.Figure,
vertices: np.ndarray,
edges: np.ndarray,
classifications: np.ndarray = None,
color: str = 'rgb(0, 0, 255)',
name: Optional[str] = None,
**kwargs):
"""Plot a camera as a cone with camera frustum."""
gt_vertices = np.array(vertices)
gt_connections = np.array(edges)
if gt_vertices is not None:
img_color2 = [color for _ in range(len(gt_vertices))]
plot_points(fig, gt_vertices, color = img_color2, ps = 10)
if gt_connections is not None:
gt_lines = []
for c in gt_connections:
v1 = gt_vertices[c[0]]
v2 = gt_vertices[c[1]]
gt_lines.append(np.stack([v1, v2], axis=0))
if classifications is not None and len(classifications) == len(gt_lines):
line_colors = []
for c in classifications:
line_colors.append(edge_color_mapping[EDGE_CLASSES_BY_ID[c]])
plot_lines_3d(fig, np.array(gt_lines), line_colors, ps=4)
else:
plot_lines_3d(fig, np.array(gt_lines), color, ps=4)
def plot_bpo_cameras_from_entry(fig: go.Figure, entry: dict, idx = None):
def cam2world_to_world2cam(R, t):
rt = np.eye(4)
rt[:3,:3] = R
rt[:3,3] = t.reshape(-1)
rt = np.linalg.inv(rt)
return rt[:3,:3], rt[:3,3]
for i in range(len(entry['R'])):
if idx is not None and i != idx:
continue
K = np.array(entry['K'][i])
R = np.array(entry['R'][i])
t = np.array(entry['t'][i])
R, t = cam2world_to_world2cam(R, t)
plot_camera(fig, R, t, K)
|