File size: 4,379 Bytes
b4bc845
9cd050d
b4bc845
 
9cd050d
b4bc845
 
 
 
 
 
9cd050d
 
b4bc845
c77b687
b4bc845
299c8f2
b4bc845
9cd050d
 
 
 
 
 
 
 
 
 
 
 
 
 
384a98d
b4bc845
 
384a98d
 
 
c848739
384a98d
2ebe002
 
82b72d0
 
2ebe002
82b72d0
811722b
 
 
1ccead8
 
 
 
 
 
811722b
526367e
1ccead8
811722b
526367e
811722b
 
 
 
 
 
 
 
1ccead8
82b72d0
9cd050d
1ccead8
811722b
 
 
 
403b0be
811722b
 
403b0be
a3a1af7
811722b
aff1e6b
811722b
 
d021f3f
811722b
a3a1af7
811722b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
526367e
403b0be
6fb346b
2ebe002
c77b687
b4bc845
 
9cd050d
 
 
 
 
 
 
 
 
 
 
c77b687
b4bc845
9cd050d
 
c77b687
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
### This is example of the script that will be run in the test environment.

### You can change the rest of the code to define and test your solution.
### However, you should not change the signature of the provided function.
### The script saves "submission.parquet" file in the current directory.
### You can use any additional files and subdirectories to organize your code.

from pathlib import Path
from tqdm import tqdm
import pandas as pd
import numpy as np
from datasets import load_dataset
from typing import Dict

def empty_solution(sample):
    '''Return a minimal valid solution, i.e. 2 vertices and 1 edge.'''
    return np.zeros((2,3)), [(0, 1)]

class Sample(Dict):
    def pick_repr_data(self, x):
        if hasattr(x, 'shape'):
            return x.shape
        if isinstance(x, (str, float, int)):
            return x
        if isinstance(x, list):
            return [type(x[0])] if len(x) > 0 else []
        return type(x)

    def __repr__(self):
        # return str({k: v.shape if hasattr(v, 'shape') else [type(v[0])] if isinstance(v, list) else type(v) for k,v in self.items()})
        return str({k: self.pick_repr_data(v) for k,v in self.items()})
    
import json
if __name__ == "__main__":
    print ("------------ Loading dataset------------ ")
    param_path = Path('params.json')
    print(param_path)
    with param_path.open() as f:
        params = json.load(f)
    print(params)
    import os
    
    print('pwd:')
    os.system('pwd')
    print(os.system('ls -lahtr'))
    print('/tmp/data/')
    print(os.system('ls -lahtr /tmp/data/'))
    print('/tmp/data/data')
    print(os.system('ls -lahtrR /tmp/data/data'))
    

    data_path_test_server = Path('/tmp/data')
    data_path_local = Path().home() / '.cache/huggingface/datasets/usm3d___hoho25k_test_x/'

    if data_path_test_server.exists():
        # data_path = data_path_test_server
        TEST_ENV = True
    else: 
        # data_path = data_path_local
        TEST_ENV = False
        from huggingface_hub import snapshot_download 
        _ = snapshot_download(
            repo_id=params['dataset'],
            local_dir="/tmp/data",
            repo_type="dataset",
        )
    data_path = data_path_test_server
    
    
    print(data_path)

    # dataset = load_dataset(params['dataset'], trust_remote_code=True, use_auth_token=params['token'])
    # data_files = {
    #     "validation": [str(p) for p in [*data_path.rglob('*validation*.arrow')]+[*data_path.rglob('*public*/**/*.tar')]],
    #     "test": [str(p) for p in [*data_path.rglob('*test*.arrow')]+[*data_path.rglob('*private*/**/*.tar')]],
    # }
    data_files = {
        "validation": [str(p) for p in data_path.rglob('*public*/**/*.tar')],
        "test": [str(p) for p in data_path.rglob('*private*/**/*.tar')],
    }
    print(data_files)
    dataset = load_dataset(
        str(data_path / 'hoho25k_test_x.py'),
        data_files=data_files,
        trust_remote_code=True,
        writer_batch_size=100
    )

    # if TEST_ENV:
    # dataset = load_dataset(
    #     "webdataset", 
    #     data_files=data_files,
    #     trust_remote_code=True,
    #     # streaming=True
    # )
    print('load with webdataset')
    # else:
        
    #     dataset = load_dataset(
    #         "arrow", 
    #         data_files=data_files,
    #         trust_remote_code=True,
    #         # streaming=True
    #     )
    #     print('load with arrow')
    

    print(dataset, flush=True)
    # dataset = load_dataset('webdataset', data_files={)
    
    print('------------ Now you can do your solution ---------------')
    solution = []
    for subset_name in dataset:
        for i, sample in enumerate(tqdm(dataset[subset_name])):
            # replace this with your solution
            print(Sample(sample), flush=True)
            print('------')
            pred_vertices, pred_edges = empty_solution(sample)
            solution.append({
                            'order_id': sample['order_id'], 
                            'wf_vertices': pred_vertices.tolist(),
                            'wf_edges': pred_edges
                        })
        
    print('------------ Saving results ---------------')
    sub = pd.DataFrame(solution, columns=["order_id", "wf_vertices", "wf_edges"])
    sub.to_parquet("submission.parquet")
    print("------------ Done ------------ ")