File size: 28,651 Bytes
25d1b04 b39c033 25d1b04 b39c033 25d1b04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 |
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- cross-encoder
- generated_from_trainer
- dataset_size:578402
- loss:BinaryCrossEntropyLoss
base_model: answerdotai/ModernBERT-large
pipeline_tag: text-ranking
library_name: sentence-transformers
metrics:
- map
- mrr@10
- ndcg@10
model-index:
- name: ModernBERT-large trained on GooAQ
results:
- task:
type: cross-encoder-reranking
name: Cross Encoder Reranking
dataset:
name: gooaq dev
type: gooaq-dev
metrics:
- type: map
value: 0.7586
name: Map
- type: mrr@10
value: 0.7576
name: Mrr@10
- type: ndcg@10
value: 0.7946
name: Ndcg@10
- task:
type: cross-encoder-reranking
name: Cross Encoder Reranking
dataset:
name: NanoMSMARCO R100
type: NanoMSMARCO_R100
metrics:
- type: map
value: 0.5488
name: Map
- type: mrr@10
value: 0.5443
name: Mrr@10
- type: ndcg@10
value: 0.6323
name: Ndcg@10
- task:
type: cross-encoder-reranking
name: Cross Encoder Reranking
dataset:
name: NanoNFCorpus R100
type: NanoNFCorpus_R100
metrics:
- type: map
value: 0.3682
name: Map
- type: mrr@10
value: 0.5677
name: Mrr@10
- type: ndcg@10
value: 0.4136
name: Ndcg@10
- task:
type: cross-encoder-reranking
name: Cross Encoder Reranking
dataset:
name: NanoNQ R100
type: NanoNQ_R100
metrics:
- type: map
value: 0.6103
name: Map
- type: mrr@10
value: 0.6108
name: Mrr@10
- type: ndcg@10
value: 0.657
name: Ndcg@10
- task:
type: cross-encoder-nano-beir
name: Cross Encoder Nano BEIR
dataset:
name: NanoBEIR R100 mean
type: NanoBEIR_R100_mean
metrics:
- type: map
value: 0.5091
name: Map
- type: mrr@10
value: 0.5743
name: Mrr@10
- type: ndcg@10
value: 0.5676
name: Ndcg@10
---
# ModernBERT-large trained on GooAQ
This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [answerdotai/ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-large) using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
See [training_gooaq_bce.py](https://github.com/UKPLab/sentence-transformers/blob/feat/cross_encoder_trainer/examples/cross_encoder/training/rerankers/training_gooaq_bce.py) for the training script - only the base model was updated from [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) to [answerdotai/ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-large). This script is also described in the [Cross Encoder > Training Overview](https://sbert.net/docs/cross_encoder/training_overview.html) documentation and the [Training and Finetuning Reranker Models with Sentence Transformers v4](https://huggingface.co/blog/train-reranker) blogpost.

## Model Details
### Model Description
- **Model Type:** Cross Encoder
- **Base model:** [answerdotai/ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-large) <!-- at revision 45bb4654a4d5aaff24dd11d4781fa46d39bf8c13 -->
- **Maximum Sequence Length:** 8192 tokens
- **Number of Output Labels:** 1 label
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import CrossEncoder
# Download from the 🤗 Hub
model = CrossEncoder("tomaarsen/reranker-ModernBERT-large-gooaq-bce")
# Get scores for pairs of texts
pairs = [
['what are the characteristics and elements of poetry?', 'The elements of poetry include meter, rhyme, form, sound, and rhythm (timing). Different poets use these elements in many different ways.'],
['what are the characteristics and elements of poetry?', "What's the first rule of writing poetry? That there are no rules — it's all up to you! Of course there are different poetic forms and devices, and free verse poems are one of the many poetic styles; they have no structure when it comes to format or even rhyming."],
['what are the characteristics and elements of poetry?', "['Blank verse. Blank verse is poetry written with a precise meter—almost always iambic pentameter—that does not rhyme. ... ', 'Rhymed poetry. In contrast to blank verse, rhymed poems rhyme by definition, although their scheme varies. ... ', 'Free verse. ... ', 'Epics. ... ', 'Narrative poetry. ... ', 'Haiku. ... ', 'Pastoral poetry. ... ', 'Sonnet.']"],
['what are the characteristics and elements of poetry?', 'The main component of poetry is its meter (the regular pattern of strong and weak stress). When a poem has a recognizable but varying pattern of stressed and unstressed syllables, the poetry is written in verse. ... There are many possible patterns of verse, and the basic pattern of each unit is called a foot.'],
['what are the characteristics and elements of poetry?', "Some poetry may not make sense to you. But that's because poets don't write to be understood by others. They write because they must. The feelings and emotions that reside within them need to be expressed."],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
# Or rank different texts based on similarity to a single text
ranks = model.rank(
'what are the characteristics and elements of poetry?',
[
'The elements of poetry include meter, rhyme, form, sound, and rhythm (timing). Different poets use these elements in many different ways.',
"What's the first rule of writing poetry? That there are no rules — it's all up to you! Of course there are different poetic forms and devices, and free verse poems are one of the many poetic styles; they have no structure when it comes to format or even rhyming.",
"['Blank verse. Blank verse is poetry written with a precise meter—almost always iambic pentameter—that does not rhyme. ... ', 'Rhymed poetry. In contrast to blank verse, rhymed poems rhyme by definition, although their scheme varies. ... ', 'Free verse. ... ', 'Epics. ... ', 'Narrative poetry. ... ', 'Haiku. ... ', 'Pastoral poetry. ... ', 'Sonnet.']",
'The main component of poetry is its meter (the regular pattern of strong and weak stress). When a poem has a recognizable but varying pattern of stressed and unstressed syllables, the poetry is written in verse. ... There are many possible patterns of verse, and the basic pattern of each unit is called a foot.',
"Some poetry may not make sense to you. But that's because poets don't write to be understood by others. They write because they must. The feelings and emotions that reside within them need to be expressed.",
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Cross Encoder Reranking
* Dataset: `gooaq-dev`
* Evaluated with [<code>CrossEncoderRerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator) with these parameters:
```json
{
"at_k": 10,
"always_rerank_positives": false
}
```
| Metric | Value |
|:------------|:---------------------|
| map | 0.7586 (+0.2275) |
| mrr@10 | 0.7576 (+0.2336) |
| **ndcg@10** | **0.7946 (+0.2034)** |
#### Cross Encoder Reranking
* Dataset: `gooaq-dev`
* Evaluated with [<code>CrossEncoderRerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator) with these parameters:
```json
{
"at_k": 10,
"always_rerank_positives": true
}
```
| Metric | Value |
|:------------|:---------------------|
| map | 0.8176 (+0.2865) |
| mrr@10 | 0.8166 (+0.2926) |
| **ndcg@10** | **0.8581 (+0.2669)** |
#### Cross Encoder Reranking
* Datasets: `NanoMSMARCO_R100`, `NanoNFCorpus_R100` and `NanoNQ_R100`
* Evaluated with [<code>CrossEncoderRerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator) with these parameters:
```json
{
"at_k": 10,
"always_rerank_positives": true
}
```
| Metric | NanoMSMARCO_R100 | NanoNFCorpus_R100 | NanoNQ_R100 |
|:------------|:---------------------|:---------------------|:---------------------|
| map | 0.5488 (+0.0592) | 0.3682 (+0.1072) | 0.6103 (+0.1907) |
| mrr@10 | 0.5443 (+0.0668) | 0.5677 (+0.0678) | 0.6108 (+0.1841) |
| **ndcg@10** | **0.6323 (+0.0918)** | **0.4136 (+0.0886)** | **0.6570 (+0.1564)** |
#### Cross Encoder Nano BEIR
* Dataset: `NanoBEIR_R100_mean`
* Evaluated with [<code>CrossEncoderNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderNanoBEIREvaluator) with these parameters:
```json
{
"dataset_names": [
"msmarco",
"nfcorpus",
"nq"
],
"rerank_k": 100,
"at_k": 10,
"always_rerank_positives": true
}
```
| Metric | Value |
|:------------|:---------------------|
| map | 0.5091 (+0.1190) |
| mrr@10 | 0.5743 (+0.1063) |
| **ndcg@10** | **0.5676 (+0.1123)** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 578,402 training samples
* Columns: <code>question</code>, <code>answer</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | question | answer | label |
|:--------|:-----------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 22 characters</li><li>mean: 43.99 characters</li><li>max: 93 characters</li></ul> | <ul><li>min: 51 characters</li><li>mean: 252.75 characters</li><li>max: 378 characters</li></ul> | <ul><li>0: ~82.30%</li><li>1: ~17.70%</li></ul> |
* Samples:
| question | answer | label |
|:------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
| <code>what are the characteristics and elements of poetry?</code> | <code>The elements of poetry include meter, rhyme, form, sound, and rhythm (timing). Different poets use these elements in many different ways.</code> | <code>1</code> |
| <code>what are the characteristics and elements of poetry?</code> | <code>What's the first rule of writing poetry? That there are no rules — it's all up to you! Of course there are different poetic forms and devices, and free verse poems are one of the many poetic styles; they have no structure when it comes to format or even rhyming.</code> | <code>0</code> |
| <code>what are the characteristics and elements of poetry?</code> | <code>['Blank verse. Blank verse is poetry written with a precise meter—almost always iambic pentameter—that does not rhyme. ... ', 'Rhymed poetry. In contrast to blank verse, rhymed poems rhyme by definition, although their scheme varies. ... ', 'Free verse. ... ', 'Epics. ... ', 'Narrative poetry. ... ', 'Haiku. ... ', 'Pastoral poetry. ... ', 'Sonnet.']</code> | <code>0</code> |
* Loss: [<code>BinaryCrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#binarycrossentropyloss) with these parameters:
```json
{
"activation_fn": "torch.nn.modules.linear.Identity",
"pos_weight": 5
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `seed`: 12
- `bf16`: True
- `dataloader_num_workers`: 4
- `load_best_model_at_end`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 12
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 4
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | gooaq-dev_ndcg@10 | NanoMSMARCO_R100_ndcg@10 | NanoNFCorpus_R100_ndcg@10 | NanoNQ_R100_ndcg@10 | NanoBEIR_R100_mean_ndcg@10 |
|:----------:|:--------:|:-------------:|:--------------------:|:------------------------:|:-------------------------:|:--------------------:|:--------------------------:|
| -1 | -1 | - | 0.1279 (-0.4633) | 0.0555 (-0.4849) | 0.1735 (-0.1516) | 0.0686 (-0.4320) | 0.0992 (-0.3562) |
| 0.0001 | 1 | 1.2592 | - | - | - | - | - |
| 0.0221 | 200 | 1.1826 | - | - | - | - | - |
| 0.0443 | 400 | 0.7653 | - | - | - | - | - |
| 0.0664 | 600 | 0.6423 | - | - | - | - | - |
| 0.0885 | 800 | 0.6 | - | - | - | - | - |
| 0.1106 | 1000 | 0.5753 | 0.7444 (+0.1531) | 0.5365 (-0.0039) | 0.4249 (+0.0998) | 0.6111 (+0.1105) | 0.5242 (+0.0688) |
| 0.1328 | 1200 | 0.5313 | - | - | - | - | - |
| 0.1549 | 1400 | 0.5315 | - | - | - | - | - |
| 0.1770 | 1600 | 0.5195 | - | - | - | - | - |
| 0.1992 | 1800 | 0.5136 | - | - | - | - | - |
| 0.2213 | 2000 | 0.4782 | 0.7774 (+0.1862) | 0.6080 (+0.0676) | 0.4371 (+0.1120) | 0.6520 (+0.1513) | 0.5657 (+0.1103) |
| 0.2434 | 2200 | 0.5026 | - | - | - | - | - |
| 0.2655 | 2400 | 0.5011 | - | - | - | - | - |
| 0.2877 | 2600 | 0.4893 | - | - | - | - | - |
| 0.3098 | 2800 | 0.4855 | - | - | - | - | - |
| 0.3319 | 3000 | 0.4687 | 0.7692 (+0.1779) | 0.6181 (+0.0777) | 0.4273 (+0.1023) | 0.6686 (+0.1679) | 0.5713 (+0.1160) |
| 0.3541 | 3200 | 0.4619 | - | - | - | - | - |
| 0.3762 | 3400 | 0.4626 | - | - | - | - | - |
| 0.3983 | 3600 | 0.4504 | - | - | - | - | - |
| 0.4204 | 3800 | 0.4435 | - | - | - | - | - |
| 0.4426 | 4000 | 0.4573 | 0.7776 (+0.1864) | 0.6589 (+0.1184) | 0.4262 (+0.1012) | 0.6634 (+0.1628) | 0.5828 (+0.1275) |
| 0.4647 | 4200 | 0.4608 | - | - | - | - | - |
| 0.4868 | 4400 | 0.4275 | - | - | - | - | - |
| 0.5090 | 4600 | 0.4317 | - | - | - | - | - |
| 0.5311 | 4800 | 0.4427 | - | - | - | - | - |
| 0.5532 | 5000 | 0.4245 | 0.7795 (+0.1883) | 0.6021 (+0.0617) | 0.4387 (+0.1137) | 0.6560 (+0.1553) | 0.5656 (+0.1102) |
| 0.5753 | 5200 | 0.4243 | - | - | - | - | - |
| 0.5975 | 5400 | 0.4295 | - | - | - | - | - |
| 0.6196 | 5600 | 0.422 | - | - | - | - | - |
| 0.6417 | 5800 | 0.4165 | - | - | - | - | - |
| 0.6639 | 6000 | 0.4281 | 0.7859 (+0.1946) | 0.6404 (+0.1000) | 0.4449 (+0.1199) | 0.6458 (+0.1451) | 0.5770 (+0.1217) |
| 0.6860 | 6200 | 0.4155 | - | - | - | - | - |
| 0.7081 | 6400 | 0.4189 | - | - | - | - | - |
| 0.7303 | 6600 | 0.4066 | - | - | - | - | - |
| 0.7524 | 6800 | 0.4114 | - | - | - | - | - |
| 0.7745 | 7000 | 0.4111 | 0.7875 (+0.1963) | 0.6358 (+0.0954) | 0.4289 (+0.1038) | 0.6358 (+0.1351) | 0.5668 (+0.1114) |
| 0.7966 | 7200 | 0.3949 | - | - | - | - | - |
| 0.8188 | 7400 | 0.4019 | - | - | - | - | - |
| 0.8409 | 7600 | 0.395 | - | - | - | - | - |
| 0.8630 | 7800 | 0.3885 | - | - | - | - | - |
| **0.8852** | **8000** | **0.3991** | **0.7946 (+0.2034)** | **0.6323 (+0.0918)** | **0.4136 (+0.0886)** | **0.6570 (+0.1564)** | **0.5676 (+0.1123)** |
| 0.9073 | 8200 | 0.3894 | - | - | - | - | - |
| 0.9294 | 8400 | 0.392 | - | - | - | - | - |
| 0.9515 | 8600 | 0.3853 | - | - | - | - | - |
| 0.9737 | 8800 | 0.3691 | - | - | - | - | - |
| 0.9958 | 9000 | 0.3784 | 0.7936 (+0.2024) | 0.6481 (+0.1077) | 0.4211 (+0.0961) | 0.6439 (+0.1433) | 0.5711 (+0.1157) |
| -1 | -1 | - | 0.7946 (+0.2034) | 0.6323 (+0.0918) | 0.4136 (+0.0886) | 0.6570 (+0.1564) | 0.5676 (+0.1123) |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.11.10
- Sentence Transformers: 3.5.0.dev0
- Transformers: 4.49.0
- PyTorch: 2.5.1+cu124
- Accelerate: 1.5.2
- Datasets: 2.21.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |