--- library_name: transformers pipeline_tag: image-text-to-text inference: true widget: - text: Hello! example_title: Hello world group: Python --- This tiny model is for debugging. It is randomly initialized with the config adapted from [google/gemma-3-27b-it](https://huggingface.co/google/gemma-3-27b-it). ### Example usage: ```python from transformers import pipeline model_id = "tiny-random/gemma-3" pipe = pipeline( "image-text-to-text", model=model_id, device="cuda", trust_remote_code=True, max_new_tokens=3, ) messages = [ { "role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}] }, { "role": "user", "content": [ {"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/p-blog/candy.JPG"}, {"type": "text", "text": "What animal is on the candy?"} ] } ] output = pipe(text=messages, max_new_tokens=5) print(output) ``` ### Codes to create this repo: ```python import torch from transformers import ( AutoConfig, AutoModelForCausalLM, AutoProcessor, AutoTokenizer, Gemma3ForConditionalGeneration, GenerationConfig, pipeline, set_seed, ) source_model_id = "google/gemma-3-27b-it" save_folder = "/tmp/tiny-random/gemma-3" processor = AutoProcessor.from_pretrained( source_model_id, trust_remote_code=True, ) processor.save_pretrained(save_folder) config = AutoConfig.from_pretrained( source_model_id, trust_remote_code=True, ) config.text_config.hidden_size = 32 config.text_config.intermediate_size = 128 config.text_config.head_dim = 32 config.text_config.num_attention_heads = 1 config.text_config.num_key_value_heads = 1 config.text_config.num_hidden_layers = 2 config.text_config.sliding_window_pattern = 2 config.vision_config.hidden_size = 32 config.vision_config.num_hidden_layers = 2 config.vision_config.num_attention_heads = 1 config.vision_config.intermediate_size = 128 model = Gemma3ForConditionalGeneration( config, ).to(torch.bfloat16) for layer in model.language_model.model.layers: print(layer.is_sliding) model.generation_config = GenerationConfig.from_pretrained( source_model_id, trust_remote_code=True, ) set_seed(42) with torch.no_grad(): for name, p in sorted(model.named_parameters()): torch.nn.init.normal_(p, 0, 0.5) print(name, p.shape) model.save_pretrained(save_folder) ```