File size: 3,304 Bytes
32b620e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
license: cc-by-nc-4.0
library_name: diffusers
tags:
- text-to-video
- diffusion distillation
---
# CausVid Model Card

> [**From Slow Bidirectional to Fast Autoregressive Video Diffusion Models**](https://arxiv.org/abs/2412.07772),
> Tianwei Yin*, Qiang Zhang*, Richard Zhang, William T. Freeman, Frédo Durand, Eli Shechtman, Xun Huang (* equal contribution)
## Environment Setup
```bash
git clone https://github.com/tianweiy/CausVid && cd CausVid
conda create -n causvid python=3.10 -y
conda activate causvid
pip install torch torchvision
pip install -r requirements.txt
python setup.py develop
```
Also download the Wan base models from [here](https://github.com/Wan-Video/Wan2.1) and save it to wan_models/Wan2.1-T2V-1.3B/
## Inference Example
First download the checkpoints: [Autoregressive Model](https://huggingface.co/tianweiy/CausVid/tree/main/autoregressive_checkpoint), [Bidirectional Model 1](https://huggingface.co/tianweiy/CausVid/tree/main/bidirectional_checkpoint1) or [Bidirectional Model 2](https://huggingface.co/tianweiy/CausVid/tree/main/bidirectional_checkpoint2) (performs slightly better).
### Autoregressive 3-step 5-second Video Generation
```bash
python minimal_inference/autoregressive_inference.py --config_path configs/wan_causal_dmd.yaml --checkpoint_folder XXX --output_folder XXX --prompt_file_path XXX
```
### Autoregressive 3-step long Video Generation
```bash
python minimal_inference/longvideo_autoregressive_inference.py --config_path configs/wan_causal_dmd.yaml --checkpoint_folder XXX --output_folder XXX --prompt_file_path XXX --num_rollout XXX
```
### Bidirectional 3-step 5-second Video Generation
```bash
python minimal_inference/bidirectional_inference.py --config_path configs/wan_bidirectional_dmd_from_scratch.yaml --checkpoint_folder XXX --output_folder XXX --prompt_file_path XXX
```
For more information, please refer to the [code repository](https://github.com/tianweiy/DMD2)
## License
CausVid is released under [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en).
## Citation
If you find CausVid useful or relevant to your research, please kindly cite our papers:
```bib
@inproceedings{yin2025causvid,
title={From Slow Bidirectional to Fast Autoregressive Video Diffusion Models},
author={Yin, Tianwei and Zhang, Qiang and Zhang, Richard and Freeman, William T and Durand, Fredo and Shechtman, Eli and Huang, Xun},
booktitle={CVPR},
year={2025}
}
@inproceedings{yin2024improved,
title={Improved Distribution Matching Distillation for Fast Image Synthesis},
author={Yin, Tianwei and Gharbi, Micha{\"e}l and Park, Taesung and Zhang, Richard and Shechtman, Eli and Durand, Fredo and Freeman, William T},
booktitle={NeurIPS},
year={2024}
}
@inproceedings{yin2024onestep,
title={One-step Diffusion with Distribution Matching Distillation},
author={Yin, Tianwei and Gharbi, Micha{\"e}l and Zhang, Richard and Shechtman, Eli and Durand, Fr{\'e}do and Freeman, William T and Park, Taesung},
booktitle={CVPR},
year={2024}
}
```
|