File size: 6,177 Bytes
cebb861
f1c3ec3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98fd0ab
f1c3ec3
98fd0ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1c3ec3
 
 
 
 
 
98fd0ab
 
 
f1c3ec3
 
 
 
 
 
 
 
 
 
 
 
 
98fd0ab
f1c3ec3
98fd0ab
f1c3ec3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98fd0ab
 
 
 
 
f1c3ec3
 
 
 
 
 
 
98fd0ab
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
base_datasets = [
    #
    # general
    #
    # 3.35 GB, 1,000,000 - Curated RefinedWeb with medium context length (2048 <= ctx_len <= 8192)
    *[
        {'kind': 'base', 'path': 'vilm/refinedweb-1m-medium', 'split': f'train[{i}%:{i + 5}%]', 'format': lambda n: n['text']}
        for i in range(0, 100, 5)
    ],
    # 4.01 GB, 1,360,929
    *[
        {'kind': 'base', 'path': 'deatos/fineweb-edu-mini-combined', 'split': f'train[{i}%:{i + 5}%]', 'format': lambda n: n['text']}
        for i in range(0, 100, 5)
    ],

    #
    # multilingual
    #
    # 3.17 GB, 2,226,907
    *[
        {'kind': 'base', 'path': 'ontocord/fineweb-permissive-multilingual-2m', 'split': f'train[{i}%:{i + 5}%]', 'format': lambda n: n['text']}
        for i in range(0, 100, 5)
    ],
    # 1.64 GB, 1,001,000
    *[
        {'kind': 'base', 'path': 'distily/c4_multilingual_1M', 'split': f'train[{i}%:{i + 5}%]', 'format': lambda n: n['text']}
        for i in range(0, 100, 5)
    ],
    # 742 MB, 321,697
    *[
        {'kind': 'base', 'path': 'data-silence/sumnews', 'split': split, 'format': lambda n: n[field]}
        for split in ['train', 'test']
        for field in ['title', 'resume', 'news']
    ],
    # 193 MB, 1,141,967
    *[
        {'kind': 'base', 'path': 'xu-song/cc100-samples', 'name': name, 'split': 'train', 'format': lambda n: n['text']}
        for name in [
            'am', 'ar', 'as', 'az', 'be', 'bg', 'bn', 'bn_rom', 'br',
            'bs', 'ca', 'cs', 'cy', 'da', 'de', 'el', 'en', 'eo', 'es',
            'et', 'eu', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl',
            'gn', 'gu', 'ha', 'he', 'hi', 'hi_rom', 'hr', 'ht', 'hu',
            'hy', 'id', 'ig', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km',
            'kn', 'ko', 'ku', 'ky', 'la', 'lg', 'li', 'ln', 'lo', 'lt',
            'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'my_zaw',
            'ne', 'nl', 'no', 'ns', 'om', 'or', 'pa', 'pl', 'ps', 'pt',
            'qu', 'rm', 'ro', 'ru', 'sa', 'si', 'sc', 'sd', 'sk', 'sl',
            'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'ta_rom',
            'te', 'te_rom', 'th', 'tl', 'tn', 'tr', 'ug', 'uk', 'ur',
            'ur_rom', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo',
            'zh-Hans', 'zh-Hant', 'zu',
        ]
    ],

    #
    # misc
    #
    # 472 KB, 5,034
    {'kind': 'base', 'path': 'badrex/llm-emoji-dataset', 'format': '{short description}. {LLM description}. {character}'},

    #
    # math
    #
    # 7.1 MB,  400,000
    *[
        {'kind': 'base', 'path': 'garrethlee/simple-arithmetic-problems', 'name': name, 'split': split, 'format': lambda n: n['question'].strip() + ' ' + n['answer'].strip()}
        for name in [
            'very_easy', 'very_easy_use_commas',
            'easy', 'easy_use_commas',
            'medium', 'medium_use_commas',
            'hard', 'hard_use_commas',
            'very_hard', 'very_hard_use_commas',
        ]
        for split in [
            'int_add_train', 'int_add_test',
            'float_add_train', 'float_add_test',
            'int_subtract_train', 'int_subtract_test',
            'float_subtract_train', 'float_subtract_test',
            'int_multiply_train', 'int_multiply_test',
            'float_multiply_train', 'float_multiply_test',
            'int_divide_train', 'int_divide_test',
            'float_divide_train', 'float_divide_test',
        ]
    ],
    # 12.2 MB, 500,000
    {'kind': 'base', 'path': 'fblgit/simple-math', 'revision': 'refs/convert/parquet', 'split': 'train', 'format': '{instruction} = {output}'},
    {'kind': 'base', 'path': 'fblgit/simple-math', 'revision': 'refs/convert/parquet', 'split': 'test', 'format': '{instruction} = {output}'},
    # 125 MB, 1,000,000
    {'kind': 'base', 'path': 'Gusarich/math-expressions-1m', 'revision': 'refs/convert/parquet', 'split': 'train', 'format': '{expression} = {result}'},

    #
    # stem
    #
    # 1.44 GB, 63,357
    *[
        {'kind': 'base', 'path': 'neuralwork/arxiver', 'split': f'train[{i}%:{i + 10}%]', 'format': lambda n: n['abstract']}
        for i in range(0, 100, 10)
    ],
    *[
        {'kind': 'base', 'path': 'neuralwork/arxiver', 'split': f'train[{i}%:{i + 10}%]', 'format': lambda n: n['markdown']}
        for i in range(0, 100, 10)
    ],

    #
    # code
    #
    # 36.8 MB, 79,013 - Rosetta Code currently has 1,203 tasks, 389 draft tasks, and is aware of 883 languages
    {'kind': 'base', 'path': 'christopher/rosetta-code', 'format': lambda n: n['code']},
    # 1.62 GB, 1,632,309 - Python, TypeScript, JavaScript, Ruby, Julia, Rust, C++, Bash, Java, C#, and Go; SQL, Cypher
    *[
        {'kind': 'base', 'path': 'nampdn-ai/tiny-codes', 'split': f'train[{i}%:{i + 10}%]', 'format': '{prompt} {response}'}
        for i in range(0, 100, 10)
    ],

    #
    # math / code
    #
    # 2.23 GB, 719,244
    *[
        {'kind': 'base', 'path': 'MathGenie/MathCode-Pile', 'split': f'train[{i}%:{i + 10}%]', 'format': lambda n: n['text']}
        for i in range(0, 100, 10)
    ],

    #
    # general knowledge
    #
    # 4.03 GB, 6,035,374
    *[
        {'kind': 'base', 'path': 'TAWGCreatology/en-wiki-paraphrased-cleaned', 'split': f'train[{i}%:{i + 5}%]', 'format': lambda n: n['paraphrase']}
        for i in range(0, 100, 5)
    ],
    # 3.18 GB, 1,010,500 - uncompressed 6GB
    *[
        {'kind': 'base', 'path': 'JeanKaddour/minipile', 'split': f'train[{i}%:{i + 5}%]', 'format': lambda n: n['text']}
        for i in range(0, 100, 5)
    ],
    {'kind': 'base', 'path': 'JeanKaddour/minipile', 'split': 'validation', 'format': lambda n: n['text']},
    {'kind': 'base', 'path': 'JeanKaddour/minipile', 'split': 'test', 'format': lambda n: n['text']},

    #
    # light instructions
    #
    # 44.3 MB, 51,760
    {'kind': 'base', 'path': 'yahma/alpaca-cleaned', 'split': 'train', 'format': '{instruction}\n{input}\n{output}'},
    # 11 MB, 12,564
    {'kind': 'base', 'path': 'Cleanlab/databricks-dolly-15k-cleanset', 'split': 'train', 'format': '{instruction}\n{context}\n{response}'},
    # 15.6 MB, 24,926
    {'kind': 'base', 'path': 'garage-bAInd/Open-Platypus', 'split': 'train', 'format': '{instruction}\n{output}'},
]