File size: 7,509 Bytes
3d391d5 8432ba4 3d391d5 8432ba4 50de401 9e1bdc3 50de401 9e1bdc3 8432ba4 12444b3 8432ba4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
---
license: mit
pipeline_tag: text-generation
library_name: transformers
language: [
'en', 'am', 'ar', 'as', 'az', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'cs', 'cy', 'da', 'de', 'el',
'eo', 'es', 'et', 'eu', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gn', 'gu', 'ha', 'he',
'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko',
'ku', 'ky', 'la', 'lg', 'li', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my',
'ne', 'nl', 'no', 'ns', 'om', 'or', 'pa', 'pl', 'ps', 'pt', 'qu', 'rm', 'ro', 'ru', 'sa', 'si',
'sc', 'sd', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'te', 'th', 'tl', 'tn',
'tr', 'ug', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zu',
]
datasets:
# core - base
- ontocord/fineweb-permissive-multilingual-2m
- distily/c4_multilingual_1M
- data-silence/sumnews
- xu-song/cc100-samples
- badrex/llm-emoji-dataset
- fblgit/simple-math
- Gusarich/math-expressions-1m
- neuralwork/arxiver
- christopher/rosetta-code
- nampdn-ai/tiny-codes
- JeanKaddour/minipile
# core - instruct
- NousResearch/hermes-function-calling-v1
- simplescaling/s1K-1.1
# base - instruct
- mlabonne/open-perfectblend
- allenai/tulu-3-sft-mixture
- rombodawg/Everything_Instruct_Multilingual
# base - reason
- open-r1/OpenR1-Math-220k
- open-thoughts/OpenThoughts-114k
- cognitivecomputations/dolphin-r1
- simplescaling/s1K-1.1
tags:
- chat
- core
- base
- instruct
- reason
---
# tangled-alpha-0.1-core

```bash
time python -B prepare_core_datasets.py
```
```
Progress: 100%|████████| 220/220 [23:15<00:00, 6.34s/it]
Workers are finished.██| 220/220 [23:15<00:00, 6.34s/it]
Finished data processing!
i=0, block_size=8192, chunk_size=16384000, len(dataset)=893355, len(dataset) * block_size=7318364160
Total number of tokens in the optimized dataset '../core-data-0-8192-2000' is 7318364160
```
```bash
CUDA_VISIBLE_DEVICES=0 CUDA_LAUNCH_BLOCKING=0 PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True litgpt pretrain --config pretrain-core-model.yaml
```
```
Seed set to 23
Time to instantiate model: 0.24 seconds.
Total parameters: 182,125,056
Verifying settings ...
Measured TFLOPs: 7041.81
Epoch 1 | iter 256 step 1 | loss train: 10.529, val: n/a | iter time: 1696.67 ms (step) remaining time: 4 days, 7:44:36
Epoch 1 | iter 512 step 2 | loss train: 10.200, val: n/a | iter time: 1260.46 ms (step) remaining time: 4 days, 2:29:51
Epoch 1 | iter 768 step 3 | loss train: 9.875, val: n/a | iter time: 1246.06 ms (step) remaining time: 4 days, 0:59:11
Epoch 1 | iter 1024 step 4 | loss train: 9.634, val: n/a | iter time: 1245.91 ms (step) remaining time: 4 days, 0:38:01
Epoch 1 | iter 1280 step 5 | loss train: 9.504, val: n/a | iter time: 1248.04 ms (step) remaining time: 4 days, 0:28:49
Epoch 1 | iter 1536 step 6 | loss train: 9.371, val: n/a | iter time: 1220.81 ms (step) remaining time: 4 days, 0:32:52
Epoch 1 | iter 1792 step 7 | loss train: 9.269, val: n/a | iter time: 1238.00 ms (step) remaining time: 4 days, 0:30:03
Epoch 1 | iter 2048 step 8 | loss train: 9.214, val: n/a | iter time: 1244.22 ms (step) remaining time: 4 days, 0:30:30
Epoch 1 | iter 2304 step 9 | loss train: 9.109, val: n/a | iter time: 1220.57 ms (step) remaining time: 4 days, 0:25:37
Epoch 1 | iter 2560 step 10 | loss train: 9.061, val: n/a | iter time: 1251.13 ms (step) remaining time: 4 days, 0:12:57
Epoch 1 | iter 2816 step 11 | loss train: 9.031, val: n/a | iter time: 1241.17 ms (step) remaining time: 4 days, 0:05:06
Epoch 1 | iter 3072 step 12 | loss train: 8.944, val: n/a | iter time: 1280.45 ms (step) remaining time: 4 days, 0:00:31
Epoch 1 | iter 3328 step 13 | loss train: 8.931, val: n/a | iter time: 1241.07 ms (step) remaining time: 4 days, 0:00:08
Epoch 1 | iter 3584 step 14 | loss train: 8.910, val: n/a | iter time: 1229.04 ms (step) remaining time: 3 days, 23:59:03
Epoch 1 | iter 3840 step 15 | loss train: 8.823, val: n/a | iter time: 1239.92 ms (step) remaining time: 3 days, 23:55:02
Epoch 1 | iter 4096 step 16 | loss train: 8.745, val: n/a | iter time: 1239.53 ms (step) remaining time: 3 days, 23:50:02
Epoch 1 | iter 4352 step 17 | loss train: 8.679, val: n/a | iter time: 1271.10 ms (step) remaining time: 3 days, 23:46:19
Epoch 1 | iter 4608 step 18 | loss train: 8.654, val: n/a | iter time: 1246.47 ms (step) remaining time: 3 days, 23:43:27
Epoch 1 | iter 4864 step 19 | loss train: 8.651, val: n/a | iter time: 1246.56 ms (step) remaining time: 3 days, 23:41:11
Epoch 1 | iter 5120 step 20 | loss train: 8.639, val: n/a | iter time: 1219.66 ms (step) remaining time: 3 days, 23:35:38
# ...
Epoch 1 | iter 442880 step 1730 | loss train: 2.740, val: 2.863 | iter time: 1340.98 ms (step) remaining time: 0:51:28
Epoch 1 | iter 443136 step 1731 | loss train: 2.734, val: 2.863 | iter time: 1387.92 ms (step) remaining time: 0:48:00
Epoch 1 | iter 443392 step 1732 | loss train: 2.730, val: 2.863 | iter time: 1309.36 ms (step) remaining time: 0:44:31
Epoch 1 | iter 443648 step 1733 | loss train: 2.715, val: 2.863 | iter time: 1292.23 ms (step) remaining time: 0:41:03
Epoch 1 | iter 443904 step 1734 | loss train: 2.718, val: 2.863 | iter time: 1311.24 ms (step) remaining time: 0:37:35
Epoch 1 | iter 444160 step 1735 | loss train: 2.709, val: 2.863 | iter time: 1291.09 ms (step) remaining time: 0:34:07
Epoch 1 | iter 444416 step 1736 | loss train: 2.723, val: 2.863 | iter time: 1304.14 ms (step) remaining time: 0:30:39
Epoch 1 | iter 444672 step 1737 | loss train: 2.721, val: 2.863 | iter time: 1278.33 ms (step) remaining time: 0:27:10
Epoch 1 | iter 444928 step 1738 | loss train: 2.697, val: 2.863 | iter time: 1292.86 ms (step) remaining time: 0:23:42
Epoch 1 | iter 445184 step 1739 | loss train: 2.763, val: 2.863 | iter time: 1284.40 ms (step) remaining time: 0:20:14
Epoch 1 | iter 445440 step 1740 | loss train: 2.775, val: 2.863 | iter time: 1302.58 ms (step) remaining time: 0:16:46
Epoch 1 | iter 445696 step 1741 | loss train: 2.756, val: 2.863 | iter time: 1298.86 ms (step) remaining time: 0:13:18
Epoch 1 | iter 445952 step 1742 | loss train: 2.728, val: 2.863 | iter time: 1279.11 ms (step) remaining time: 0:09:49
Epoch 1 | iter 446208 step 1743 | loss train: 2.637, val: 2.863 | iter time: 1308.11 ms (step) remaining time: 0:06:21
Epoch 1 | iter 446464 step 1744 | loss train: 2.638, val: 2.863 | iter time: 1294.08 ms (step) remaining time: 0:02:53
Validating ...
Final evaluation | val loss: 2.862 | val ppl: 17.494
Saving checkpoint to '../out/pretrain-core/final/lit_model.pth'
----------------------------------------
| Performance
| - Total tokens : 7,318,355,968
| - Training Time : 363457.29 s
| - Tok/sec : 2103064.60 tok/s
| ----------------------------------------
| Memory Usage
| - Memory Used : 20.93 GB
----------------------------------------
```
Backup `wandb`:
```bash
mv wandb wandb-pretrain-core
```
Chat with model:
```bash
CUDA_VISIBLE_DEVICES=0 CUDA_LAUNCH_BLOCKING=0 PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True litgpt chat ../out/pretrain-core/final
```
```bash
CUDA_VISIBLE_DEVICES=0 CUDA_LAUNCH_BLOCKING=0 PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True time litgpt evaluate --tasks 'leaderboard' --out_dir '../evaluate/pretrain-core/leaderboard/' --batch_size 1 --dtype 'bfloat16' '../out/pretrain-core/final'
```
```
# ...
```
|