t83714 commited on
Commit
28b6cfa
·
verified ·
1 Parent(s): c49e2c6

Upload limo-lora-r4-atten-layers-only-qwen-32b-instruct-t0.0_k1_s0_e500.jsonl (#1)

Browse files

- Upload limo-lora-r4-atten-layers-only-qwen-32b-instruct-t0.0_k1_s0_e500.jsonl (2cb6811250974838afb28d4a1b93f28e95eec176)
- Delete eval/math/test_qwen-instruct_t0.0_k1_s0_e500.jsonl (136edf03943a3d5090528b7529b9da1657adcc62)
- Delete eval/math/test_qwen-instruct_t0.0_k1_s0_e500_gen_round0.pkl (dfabefbd0136beacb03c49f4f43a63239cff5cf6)
- Update README.md (7ec7855986557a9680b8ec918dde3f49cf83b948)

README.md CHANGED
@@ -1,202 +1,108 @@
1
  ---
2
  base_model: Qwen/Qwen2.5-32B-Instruct
3
  library_name: peft
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
-
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
- ### Framework versions
201
-
202
- - PEFT 0.12.0
 
1
  ---
2
  base_model: Qwen/Qwen2.5-32B-Instruct
3
  library_name: peft
4
+ license: apache-2.0
5
+ datasets:
6
+ - GAIR/LIMO
7
+ pipeline_tag: text-generation
8
  ---
9
 
10
+ # qwen2.5-32b-instruct-limo-lora-adapter
11
+
12
+ This model is a fine-tuned version of [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) model. The fine-tuning was performed using Low-Rank Adaptation (LoRA) on the [LIMO dataset](https://huggingface.co/datasets/GAIR/LIMO) to enhance the model's reasoning capabilities, based on the work in the paper: [LIMO: Less is More for Reasoning](https://arxiv.org/pdf/2502.03387).
13
+
14
+ ## Model description
15
+
16
+ - **Base Model**: [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct)
17
+ - **Fine-Tuning Dataset**: [GAIR/LIMO](https://huggingface.co/datasets/GAIR/LIMO)
18
+ - **Fine-Tuning Method**: Low-Rank Adaptation (LoRA)
19
+ - **Library Used**: [peft](https://github.com/huggingface/peft)
20
+ - **License**: [Apache 2.0](LICENSE)
21
+
22
+ ## Usage
23
+
24
+ To utilize this model for text generation tasks, follow the steps below:
25
+
26
+ ### Installation
27
+
28
+ Ensure you have the necessary libraries installed:
29
+
30
+ ```bash
31
+ pip install torch transformers peft
32
+ ```
33
+
34
+ ### Generating Text
35
+
36
+ ```python
37
+ from transformers import AutoModelForCausalLM, AutoTokenizer
38
+ from peft import PeftModel
39
+ # Load the base model
40
+ base_model_name = "Qwen/Qwen2.5-32B-Instruct"
41
+ base_model = AutoModelForCausalLM.from_pretrained(base_model_name, torch_dtype="auto", device_map="auto")
42
+ # Load the tokenizer
43
+ tokenizer = AutoTokenizer.from_pretrained(base_model_name)
44
+ # Load the LoRA adapter
45
+ adapter_path = "t83714/qwen2.5-32b-instruct-limo-lora-adapter"
46
+ model = PeftModel.from_pretrained(base_model, adapter_path)
47
+ prompt = "How much is (2+5)x5/7"
48
+ # Tokenize the input
49
+ inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
50
+ # Generate the output
51
+ output = model.generate(**inputs, max_length=8000)
52
+ print(tokenizer.decode(output[0], skip_special_tokens=True))
53
+ ```
54
+
55
+ ### Merge the adapter and export merged model
56
+
57
+ ```python
58
+ from peft import PeftModel
59
+ from transformers import AutoModelForCausalLM
60
+ base_model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-32B-Instruct")
61
+ # Load the LoRA adapter
62
+ adapter_path = "t83714/qwen2.5-32b-instruct-limo-lora-adapter"
63
+ model = PeftModel.from_pretrained(base_model, adapter_path)
64
+ merged_model = model.merge_and_unload()
65
+ merged_model.save_pretrained("./merged-model/")
66
+ ```
67
+
68
+ ## Training procedure
69
+
70
+ ### Training hyperparameters
71
+
72
+ The following hyperparameters were used during training:
73
+ - learning_rate: 5e-06
74
+ - train_batch_size: 1
75
+ - eval_batch_size: 8
76
+ - seed: 42
77
+ - distributed_type: multi-GPU
78
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
79
+ - generation_max_length: 16384
80
+ - lr_scheduler_type: cosine
81
+ - num_epochs: 15
82
+ - lora rank: 8
83
+ - lora target layers:
84
+ - v_proj
85
+ - o_proj
86
+ - q_proj
87
+ - k_proj
88
+
89
+
90
+
91
+ ## Eval Result
92
+
93
+ [Math 500](https://github.com/GAIR-NLP/LIMO/blob/main/eval/data/math/test.jsonl) pass@1: 85%
94
+
95
+
96
+ ## Acknowledgment
97
+ This model is trained based on the work of [Ye et al. (2025)](https://arxiv.org/abs/2502.03387). If you use this model, please also consider citing their paper:
98
+ ```bibtex
99
+ @misc{ye2025limoreasoning,
100
+ title={LIMO: Less is More for Reasoning},
101
+ author={Yixin Ye and Zhen Huang and Yang Xiao and Ethan Chern and Shijie Xia and Pengfei Liu},
102
+ year={2025},
103
+ eprint={2502.03387},
104
+ archivePrefix={arXiv},
105
+ primaryClass={cs.CL},
106
+ url={https://arxiv.org/abs/2502.03387},
107
+ }
108
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eval/math/limo-lora-r4-atten-layers-only-qwen-32b-instruct-t0.0_k1_s0_e500.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
eval/math/test_qwen-instruct_t0.0_k1_s0_e500.jsonl DELETED
The diff for this file is too large to render. See raw diff
 
eval/math/test_qwen-instruct_t0.0_k1_s0_e500_gen_round0.pkl DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:240cf341496b9b33b3094cafbf161891fcdeb2ab07197175367c3d34a31b6904
3
- size 36828819