Upload limo-lora-r4-atten-layers-only-qwen-32b-instruct-t0.0_k1_s0_e500.jsonl (#1)
Browse files- Upload limo-lora-r4-atten-layers-only-qwen-32b-instruct-t0.0_k1_s0_e500.jsonl (2cb6811250974838afb28d4a1b93f28e95eec176)
- Delete eval/math/test_qwen-instruct_t0.0_k1_s0_e500.jsonl (136edf03943a3d5090528b7529b9da1657adcc62)
- Delete eval/math/test_qwen-instruct_t0.0_k1_s0_e500_gen_round0.pkl (dfabefbd0136beacb03c49f4f43a63239cff5cf6)
- Update README.md (7ec7855986557a9680b8ec918dde3f49cf83b948)
README.md
CHANGED
@@ -1,202 +1,108 @@
|
|
1 |
---
|
2 |
base_model: Qwen/Qwen2.5-32B-Instruct
|
3 |
library_name: peft
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
-
### Framework versions
|
201 |
-
|
202 |
-
- PEFT 0.12.0
|
|
|
1 |
---
|
2 |
base_model: Qwen/Qwen2.5-32B-Instruct
|
3 |
library_name: peft
|
4 |
+
license: apache-2.0
|
5 |
+
datasets:
|
6 |
+
- GAIR/LIMO
|
7 |
+
pipeline_tag: text-generation
|
8 |
---
|
9 |
|
10 |
+
# qwen2.5-32b-instruct-limo-lora-adapter
|
11 |
+
|
12 |
+
This model is a fine-tuned version of [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) model. The fine-tuning was performed using Low-Rank Adaptation (LoRA) on the [LIMO dataset](https://huggingface.co/datasets/GAIR/LIMO) to enhance the model's reasoning capabilities, based on the work in the paper: [LIMO: Less is More for Reasoning](https://arxiv.org/pdf/2502.03387).
|
13 |
+
|
14 |
+
## Model description
|
15 |
+
|
16 |
+
- **Base Model**: [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct)
|
17 |
+
- **Fine-Tuning Dataset**: [GAIR/LIMO](https://huggingface.co/datasets/GAIR/LIMO)
|
18 |
+
- **Fine-Tuning Method**: Low-Rank Adaptation (LoRA)
|
19 |
+
- **Library Used**: [peft](https://github.com/huggingface/peft)
|
20 |
+
- **License**: [Apache 2.0](LICENSE)
|
21 |
+
|
22 |
+
## Usage
|
23 |
+
|
24 |
+
To utilize this model for text generation tasks, follow the steps below:
|
25 |
+
|
26 |
+
### Installation
|
27 |
+
|
28 |
+
Ensure you have the necessary libraries installed:
|
29 |
+
|
30 |
+
```bash
|
31 |
+
pip install torch transformers peft
|
32 |
+
```
|
33 |
+
|
34 |
+
### Generating Text
|
35 |
+
|
36 |
+
```python
|
37 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
38 |
+
from peft import PeftModel
|
39 |
+
# Load the base model
|
40 |
+
base_model_name = "Qwen/Qwen2.5-32B-Instruct"
|
41 |
+
base_model = AutoModelForCausalLM.from_pretrained(base_model_name, torch_dtype="auto", device_map="auto")
|
42 |
+
# Load the tokenizer
|
43 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
44 |
+
# Load the LoRA adapter
|
45 |
+
adapter_path = "t83714/qwen2.5-32b-instruct-limo-lora-adapter"
|
46 |
+
model = PeftModel.from_pretrained(base_model, adapter_path)
|
47 |
+
prompt = "How much is (2+5)x5/7"
|
48 |
+
# Tokenize the input
|
49 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
50 |
+
# Generate the output
|
51 |
+
output = model.generate(**inputs, max_length=8000)
|
52 |
+
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
53 |
+
```
|
54 |
+
|
55 |
+
### Merge the adapter and export merged model
|
56 |
+
|
57 |
+
```python
|
58 |
+
from peft import PeftModel
|
59 |
+
from transformers import AutoModelForCausalLM
|
60 |
+
base_model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-32B-Instruct")
|
61 |
+
# Load the LoRA adapter
|
62 |
+
adapter_path = "t83714/qwen2.5-32b-instruct-limo-lora-adapter"
|
63 |
+
model = PeftModel.from_pretrained(base_model, adapter_path)
|
64 |
+
merged_model = model.merge_and_unload()
|
65 |
+
merged_model.save_pretrained("./merged-model/")
|
66 |
+
```
|
67 |
+
|
68 |
+
## Training procedure
|
69 |
+
|
70 |
+
### Training hyperparameters
|
71 |
+
|
72 |
+
The following hyperparameters were used during training:
|
73 |
+
- learning_rate: 5e-06
|
74 |
+
- train_batch_size: 1
|
75 |
+
- eval_batch_size: 8
|
76 |
+
- seed: 42
|
77 |
+
- distributed_type: multi-GPU
|
78 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
79 |
+
- generation_max_length: 16384
|
80 |
+
- lr_scheduler_type: cosine
|
81 |
+
- num_epochs: 15
|
82 |
+
- lora rank: 8
|
83 |
+
- lora target layers:
|
84 |
+
- v_proj
|
85 |
+
- o_proj
|
86 |
+
- q_proj
|
87 |
+
- k_proj
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
## Eval Result
|
92 |
+
|
93 |
+
[Math 500](https://github.com/GAIR-NLP/LIMO/blob/main/eval/data/math/test.jsonl) pass@1: 85%
|
94 |
+
|
95 |
+
|
96 |
+
## Acknowledgment
|
97 |
+
This model is trained based on the work of [Ye et al. (2025)](https://arxiv.org/abs/2502.03387). If you use this model, please also consider citing their paper:
|
98 |
+
```bibtex
|
99 |
+
@misc{ye2025limoreasoning,
|
100 |
+
title={LIMO: Less is More for Reasoning},
|
101 |
+
author={Yixin Ye and Zhen Huang and Yang Xiao and Ethan Chern and Shijie Xia and Pengfei Liu},
|
102 |
+
year={2025},
|
103 |
+
eprint={2502.03387},
|
104 |
+
archivePrefix={arXiv},
|
105 |
+
primaryClass={cs.CL},
|
106 |
+
url={https://arxiv.org/abs/2502.03387},
|
107 |
+
}
|
108 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
eval/math/limo-lora-r4-atten-layers-only-qwen-32b-instruct-t0.0_k1_s0_e500.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
eval/math/test_qwen-instruct_t0.0_k1_s0_e500.jsonl
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/math/test_qwen-instruct_t0.0_k1_s0_e500_gen_round0.pkl
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:240cf341496b9b33b3094cafbf161891fcdeb2ab07197175367c3d34a31b6904
|
3 |
-
size 36828819
|
|
|
|
|
|
|
|