mskrt commited on
Commit
6ce4751
verified
1 Parent(s): 3858858

Update pipeline.py

Browse files
Files changed (1) hide show
  1. pipeline.py +2 -12
pipeline.py CHANGED
@@ -50,21 +50,12 @@ class SuperDiffSDXLPipeline(DiffusionPipeline, ConfigMixin):
50
  """
51
  super().__init__()
52
  device = "cuda" if torch.cuda.is_available() else "cpu"
53
- print("decice", device)
54
 
55
  vae.to(device)
56
  unet.to(device)
57
  text_encoder.to(device)
58
  text_encoder_2.to(device)
59
- #dtype = torch.float16
60
- #vae = AutoencoderKL.from_pretrained(model_path, subfolder="vae").to(device)
61
- #tokenizer = CLIPTokenizer.from_pretrained(model_path, subfolder="tokenizer")
62
- #tokenizer_2 = CLIPTokenizer.from_pretrained(model_path, subfolder="tokenizer_2")
63
- #text_encoder = CLIPTextModel.from_pretrained(model_path, subfolder="text_encoder").to(device, dtype=dtype)
64
- #text_encoder_2 = CLIPTextModelWithProjection.from_pretrained(model_path, subfolder="text_encoder_2").to(device, dtype=dtype)
65
- #unet = UNet2DConditionModel.from_pretrained(model_path, subfolder="unet").to(device, dtype=dtype)
66
- #vae.eval()
67
- #unet.eval()
68
 
69
  self.register_modules(unet=unet,
70
  vae=vae,
@@ -73,9 +64,8 @@ class SuperDiffSDXLPipeline(DiffusionPipeline, ConfigMixin):
73
  tokenizer=tokenizer,
74
  tokenizer_2=tokenizer_2,
75
  )
76
- print("decice2", self.device)
77
  def prepare_prompt_input(self, prompt_o, prompt_b, batch_size, height, width):
78
- print("self.device", self.device)
79
  text_input = self.tokenizer(prompt_o* batch_size, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt")
80
  text_input_2 = self.tokenizer_2(prompt_o* batch_size, padding="max_length", max_length=self.tokenizer_2.model_max_length, truncation=True, return_tensors="pt")
81
  with torch.no_grad():
 
50
  """
51
  super().__init__()
52
  device = "cuda" if torch.cuda.is_available() else "cpu"
 
53
 
54
  vae.to(device)
55
  unet.to(device)
56
  text_encoder.to(device)
57
  text_encoder_2.to(device)
58
+
 
 
 
 
 
 
 
 
59
 
60
  self.register_modules(unet=unet,
61
  vae=vae,
 
64
  tokenizer=tokenizer,
65
  tokenizer_2=tokenizer_2,
66
  )
67
+
68
  def prepare_prompt_input(self, prompt_o, prompt_b, batch_size, height, width):
 
69
  text_input = self.tokenizer(prompt_o* batch_size, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt")
70
  text_input_2 = self.tokenizer_2(prompt_o* batch_size, padding="max_length", max_length=self.tokenizer_2.model_max_length, truncation=True, return_tensors="pt")
71
  with torch.no_grad():