Upload pipeline.py
Browse files- pipeline.py +1 -2
pipeline.py
CHANGED
@@ -342,7 +342,6 @@ class SuperDiffSDXLPipeline(DiffusionPipeline, ConfigMixin):
|
|
342 |
self.num_inference_steps = num_inference_steps
|
343 |
self.guidance_scale = guidance_scale
|
344 |
self.seed = seed
|
345 |
-
self.dtype = torch.float16
|
346 |
if self.seed is None:
|
347 |
self.seed = random.randint(0, 2**32 - 1)
|
348 |
|
@@ -353,7 +352,7 @@ class SuperDiffSDXLPipeline(DiffusionPipeline, ConfigMixin):
|
|
353 |
latents = torch.randn(
|
354 |
(batch_size, self.unet.in_channels, height // 8, width // 8),
|
355 |
generator=self.generator,
|
356 |
-
dtype=
|
357 |
device=self.device,
|
358 |
)
|
359 |
prompt_embeds, added_cond_kwargs = self.prepare_prompt_input(
|
|
|
342 |
self.num_inference_steps = num_inference_steps
|
343 |
self.guidance_scale = guidance_scale
|
344 |
self.seed = seed
|
|
|
345 |
if self.seed is None:
|
346 |
self.seed = random.randint(0, 2**32 - 1)
|
347 |
|
|
|
352 |
latents = torch.randn(
|
353 |
(batch_size, self.unet.in_channels, height // 8, width // 8),
|
354 |
generator=self.generator,
|
355 |
+
dtype=torch.float16,
|
356 |
device=self.device,
|
357 |
)
|
358 |
prompt_embeds, added_cond_kwargs = self.prepare_prompt_input(
|