Upload pipeline.py
Browse files- pipeline.py +83 -44
pipeline.py
CHANGED
@@ -38,8 +38,10 @@ def int_beta(t):
|
|
38 |
t :
|
39 |
t
|
40 |
"""
|
41 |
-
|
42 |
-
|
|
|
|
|
43 |
def sigma(t):
|
44 |
"""sigma.
|
45 |
|
@@ -48,7 +50,9 @@ def sigma(t):
|
|
48 |
t :
|
49 |
t
|
50 |
"""
|
51 |
-
|
|
|
|
|
52 |
def sigma_orig(t):
|
53 |
"""sigma_orig.
|
54 |
|
@@ -57,13 +61,13 @@ def sigma_orig(t):
|
|
57 |
t :
|
58 |
t
|
59 |
"""
|
60 |
-
|
|
|
61 |
|
62 |
class SuperDiffSDXLPipeline(DiffusionPipeline, ConfigMixin):
|
63 |
"""SuperDiffSDXLPipeline."""
|
64 |
|
65 |
def __init__(self, unet: Callable, vae: Callable, text_encoder: Callable, text_encoder_2: Callable, tokenizer: Callable, tokenizer_2: Callable) -> None:
|
66 |
-
|
67 |
"""__init__.
|
68 |
|
69 |
Parameters
|
@@ -87,16 +91,16 @@ class SuperDiffSDXLPipeline(DiffusionPipeline, ConfigMixin):
|
|
87 |
|
88 |
"""
|
89 |
super().__init__()
|
90 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
91 |
-
dtype=torch.float16
|
92 |
|
93 |
vae.to(device)
|
94 |
unet.to(device)
|
95 |
text_encoder.to(device)
|
96 |
text_encoder_2.to(device)
|
97 |
|
98 |
-
self.register_modules(unet=unet,
|
99 |
-
vae=vae,
|
100 |
text_encoder=text_encoder,
|
101 |
text_encoder_2=text_encoder_2,
|
102 |
tokenizer=tokenizer,
|
@@ -119,34 +123,50 @@ class SuperDiffSDXLPipeline(DiffusionPipeline, ConfigMixin):
|
|
119 |
width :
|
120 |
width
|
121 |
"""
|
122 |
-
text_input = self.tokenizer(prompt_o* batch_size, padding="max_length",
|
123 |
-
|
|
|
|
|
124 |
with torch.no_grad():
|
125 |
-
text_embeddings = self.text_encoder(
|
126 |
-
|
127 |
-
|
|
|
|
|
|
|
128 |
pooled_prompt_embeds_o = text_embeddings_2[0]
|
129 |
negative_prompt_embeds = torch.zeros_like(prompt_embeds_o)
|
130 |
-
negative_pooled_prompt_embeds = torch.zeros_like(
|
131 |
-
|
132 |
-
|
133 |
-
|
|
|
|
|
|
|
134 |
with torch.no_grad():
|
135 |
-
text_embeddings = self.text_encoder(
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
138 |
pooled_prompt_embeds_b = text_embeddings_2[0]
|
139 |
-
add_time_ids_o = torch.tensor([(height,width,0,0,height,width)])
|
140 |
-
add_time_ids_b = torch.tensor([(height,width,0,0,height,width)])
|
141 |
-
negative_add_time_ids = torch.tensor(
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
|
|
|
|
|
|
|
|
146 |
prompt_embeds = prompt_embeds.to(self.device)
|
147 |
add_text_embeds = add_text_embeds.to(self.device)
|
148 |
add_time_ids = add_time_ids.to(self.device).repeat(batch_size, 1)
|
149 |
-
added_cond_kwargs = {
|
|
|
150 |
return prompt_embeds, added_cond_kwargs
|
151 |
|
152 |
@torch.no_grad
|
@@ -217,6 +237,15 @@ class SuperDiffSDXLPipeline(DiffusionPipeline, ConfigMixin):
|
|
217 |
def v(_x, _e): return self.model(
|
218 |
"""v.
|
219 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
Parameters
|
221 |
----------
|
222 |
_x :
|
@@ -280,8 +309,10 @@ class SuperDiffSDXLPipeline(DiffusionPipeline, ConfigMixin):
|
|
280 |
self.seed
|
281 |
) # Seed generator to create the initial latent noise
|
282 |
|
283 |
-
latents = torch.randn((batch_size, self.unet.in_channels, height // 8, width // 8),
|
284 |
-
|
|
|
|
|
285 |
|
286 |
return {
|
287 |
"latents": latents,
|
@@ -317,18 +348,26 @@ class SuperDiffSDXLPipeline(DiffusionPipeline, ConfigMixin):
|
|
317 |
dsigma = sigma(t-dt) - sigma_t
|
318 |
latent_model_input /= (sigma_t**2+1)**0.5
|
319 |
with torch.no_grad():
|
320 |
-
noise_pred = self.unet(latent_model_input, t*train_number_steps, encoder_hidden_states=prompt_embeds,
|
321 |
-
|
322 |
-
|
323 |
-
|
|
|
|
|
324 |
# noise = torch.sqrt(2*torch.abs(dsigma)*sigma_t)*torch.randn_like(latents)
|
325 |
-
noise = torch.sqrt(2*torch.abs(dsigma)*sigma_t)*torch.empty_like(
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
332 |
if i < self.num_inference_steps - 1:
|
333 |
latents += 2*dsigma * noise_pred + noise
|
334 |
else:
|
@@ -354,7 +393,7 @@ class SuperDiffSDXLPipeline(DiffusionPipeline, ConfigMixin):
|
|
354 |
latents = latents.to(torch.float32)
|
355 |
with torch.no_grad():
|
356 |
image = self.vae.decode(latents, return_dict=False)[0]
|
357 |
-
|
358 |
image = (image / 2 + 0.5).clamp(0, 1)
|
359 |
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
|
360 |
images = (image * 255).round().astype("uint8")
|
@@ -389,7 +428,7 @@ class SuperDiffSDXLPipeline(DiffusionPipeline, ConfigMixin):
|
|
389 |
height
|
390 |
width : int
|
391 |
width
|
392 |
-
guidance_scale :
|
393 |
guidance_scale
|
394 |
|
395 |
Returns
|
|
|
38 |
t :
|
39 |
t
|
40 |
"""
|
41 |
+
a, b = get_scaled_coeffs()
|
42 |
+
return ((a+b*t)**3-a**3)/(3*b)
|
43 |
+
|
44 |
+
|
45 |
def sigma(t):
|
46 |
"""sigma.
|
47 |
|
|
|
50 |
t :
|
51 |
t
|
52 |
"""
|
53 |
+
return torch.expm1(int_beta(t))**0.5
|
54 |
+
|
55 |
+
|
56 |
def sigma_orig(t):
|
57 |
"""sigma_orig.
|
58 |
|
|
|
61 |
t :
|
62 |
t
|
63 |
"""
|
64 |
+
return (-torch.expm1(-int_beta(t)))**0.5
|
65 |
+
|
66 |
|
67 |
class SuperDiffSDXLPipeline(DiffusionPipeline, ConfigMixin):
|
68 |
"""SuperDiffSDXLPipeline."""
|
69 |
|
70 |
def __init__(self, unet: Callable, vae: Callable, text_encoder: Callable, text_encoder_2: Callable, tokenizer: Callable, tokenizer_2: Callable) -> None:
|
|
|
71 |
"""__init__.
|
72 |
|
73 |
Parameters
|
|
|
91 |
|
92 |
"""
|
93 |
super().__init__()
|
94 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
95 |
+
dtype = torch.float16
|
96 |
|
97 |
vae.to(device)
|
98 |
unet.to(device)
|
99 |
text_encoder.to(device)
|
100 |
text_encoder_2.to(device)
|
101 |
|
102 |
+
self.register_modules(unet=unet,
|
103 |
+
vae=vae,
|
104 |
text_encoder=text_encoder,
|
105 |
text_encoder_2=text_encoder_2,
|
106 |
tokenizer=tokenizer,
|
|
|
123 |
width :
|
124 |
width
|
125 |
"""
|
126 |
+
text_input = self.tokenizer(prompt_o * batch_size, padding="max_length",
|
127 |
+
max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt")
|
128 |
+
text_input_2 = self.tokenizer_2(prompt_o * batch_size, padding="max_length",
|
129 |
+
max_length=self.tokenizer_2.model_max_length, truncation=True, return_tensors="pt")
|
130 |
with torch.no_grad():
|
131 |
+
text_embeddings = self.text_encoder(
|
132 |
+
text_input.input_ids.to(self.device), output_hidden_states=True)
|
133 |
+
text_embeddings_2 = self.text_encoder_2(
|
134 |
+
text_input_2.input_ids.to(self.device), output_hidden_states=True)
|
135 |
+
prompt_embeds_o = torch.concat(
|
136 |
+
(text_embeddings.hidden_states[-2], text_embeddings_2.hidden_states[-2]), dim=-1)
|
137 |
pooled_prompt_embeds_o = text_embeddings_2[0]
|
138 |
negative_prompt_embeds = torch.zeros_like(prompt_embeds_o)
|
139 |
+
negative_pooled_prompt_embeds = torch.zeros_like(
|
140 |
+
pooled_prompt_embeds_o)
|
141 |
+
|
142 |
+
text_input = self.tokenizer(prompt_b * batch_size, padding="max_length",
|
143 |
+
max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt")
|
144 |
+
text_input_2 = self.tokenizer_2(prompt_b * batch_size, padding="max_length",
|
145 |
+
max_length=self.tokenizer_2.model_max_length, truncation=True, return_tensors="pt")
|
146 |
with torch.no_grad():
|
147 |
+
text_embeddings = self.text_encoder(
|
148 |
+
text_input.input_ids.to(self.device), output_hidden_states=True)
|
149 |
+
text_embeddings_2 = self.text_encoder_2(
|
150 |
+
text_input_2.input_ids.to(self.device), output_hidden_states=True)
|
151 |
+
prompt_embeds_b = torch.concat(
|
152 |
+
(text_embeddings.hidden_states[-2], text_embeddings_2.hidden_states[-2]), dim=-1)
|
153 |
pooled_prompt_embeds_b = text_embeddings_2[0]
|
154 |
+
add_time_ids_o = torch.tensor([(height, width, 0, 0, height, width)])
|
155 |
+
add_time_ids_b = torch.tensor([(height, width, 0, 0, height, width)])
|
156 |
+
negative_add_time_ids = torch.tensor(
|
157 |
+
[(height, width, 0, 0, height, width)])
|
158 |
+
prompt_embeds = torch.cat(
|
159 |
+
[negative_prompt_embeds, prompt_embeds_o, prompt_embeds_b], dim=0)
|
160 |
+
add_text_embeds = torch.cat(
|
161 |
+
[negative_pooled_prompt_embeds, pooled_prompt_embeds_o, pooled_prompt_embeds_b], dim=0)
|
162 |
+
add_time_ids = torch.cat(
|
163 |
+
[negative_add_time_ids, add_time_ids_o, add_time_ids_b], dim=0)
|
164 |
+
|
165 |
prompt_embeds = prompt_embeds.to(self.device)
|
166 |
add_text_embeds = add_text_embeds.to(self.device)
|
167 |
add_time_ids = add_time_ids.to(self.device).repeat(batch_size, 1)
|
168 |
+
added_cond_kwargs = {
|
169 |
+
"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
170 |
return prompt_embeds, added_cond_kwargs
|
171 |
|
172 |
@torch.no_grad
|
|
|
237 |
def v(_x, _e): return self.model(
|
238 |
"""v.
|
239 |
|
240 |
+
Parameters
|
241 |
+
----------
|
242 |
+
_x :
|
243 |
+
_x
|
244 |
+
_e :
|
245 |
+
_e
|
246 |
+
"""
|
247 |
+
"""v.
|
248 |
+
|
249 |
Parameters
|
250 |
----------
|
251 |
_x :
|
|
|
309 |
self.seed
|
310 |
) # Seed generator to create the initial latent noise
|
311 |
|
312 |
+
latents = torch.randn((batch_size, self.unet.in_channels, height // 8, width // 8),
|
313 |
+
generator=self.generator, dtype=self.dtype, device=self.device,)
|
314 |
+
prompt_embeds, added_cond_kwargs = self.prepare_prompt_input(
|
315 |
+
prompt_1, prompt_2, batch_size, height, width)
|
316 |
|
317 |
return {
|
318 |
"latents": latents,
|
|
|
348 |
dsigma = sigma(t-dt) - sigma_t
|
349 |
latent_model_input /= (sigma_t**2+1)**0.5
|
350 |
with torch.no_grad():
|
351 |
+
noise_pred = self.unet(latent_model_input, t*train_number_steps, encoder_hidden_states=prompt_embeds,
|
352 |
+
added_cond_kwargs=added_cond_kwargs, return_dict=False)[0]
|
353 |
+
|
354 |
+
noise_pred_uncond, noise_pred_text_o, noise_pred_text_b = noise_pred.chunk(
|
355 |
+
3)
|
356 |
+
|
357 |
# noise = torch.sqrt(2*torch.abs(dsigma)*sigma_t)*torch.randn_like(latents)
|
358 |
+
noise = torch.sqrt(2*torch.abs(dsigma)*sigma_t)*torch.empty_like(
|
359 |
+
latents, device=self.device).normal_(generator=self.generator)
|
360 |
+
|
361 |
+
dx_ind = 2*dsigma*(noise_pred_uncond + self.guidance_scale *
|
362 |
+
(noise_pred_text_b - noise_pred_uncond)) + noise
|
363 |
+
kappa = (torch.abs(dsigma)*(noise_pred_text_b-noise_pred_text_o)*(noise_pred_text_b+noise_pred_text_o)
|
364 |
+
).sum((1, 2, 3))-(dx_ind*((noise_pred_text_o-noise_pred_text_b))).sum((1, 2, 3))
|
365 |
+
kappa /= 2*dsigma*self.guidance_scale * \
|
366 |
+
((noise_pred_text_o-noise_pred_text_b)**2).sum((1, 2, 3))
|
367 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * \
|
368 |
+
((noise_pred_text_b - noise_pred_uncond) +
|
369 |
+
kappa[:, None, None, None]*(noise_pred_text_o-noise_pred_text_b))
|
370 |
+
|
371 |
if i < self.num_inference_steps - 1:
|
372 |
latents += 2*dsigma * noise_pred + noise
|
373 |
else:
|
|
|
393 |
latents = latents.to(torch.float32)
|
394 |
with torch.no_grad():
|
395 |
image = self.vae.decode(latents, return_dict=False)[0]
|
396 |
+
|
397 |
image = (image / 2 + 0.5).clamp(0, 1)
|
398 |
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
|
399 |
images = (image * 255).round().astype("uint8")
|
|
|
428 |
height
|
429 |
width : int
|
430 |
width
|
431 |
+
guidance_scale : float
|
432 |
guidance_scale
|
433 |
|
434 |
Returns
|