suimu nielsr HF Staff commited on
Commit
5d75a67
·
verified ·
1 Parent(s): 7a6ae87

Add pipeline tag, library name and license (#1)

Browse files

- Add pipeline tag, library name and license (870fee5056121be118c8ee68684242343ceb3249)


Co-authored-by: Niels Rogge <[email protected]>

Files changed (1) hide show
  1. README.md +34 -8
README.md CHANGED
@@ -1,3 +1,9 @@
 
 
 
 
 
 
1
  # VIRES model card
2
 
3
  **Model Page**: [VIRES](https://hjzheng.net/projects/VIRES/)
@@ -8,21 +14,42 @@ Summary description and brief definition of inputs and outputs.
8
 
9
  ### Description
10
 
11
- VIRES is a video instance repainting method with sketch and text guidance, enabling video instance repainting, replacement, generation, and removal. Existing approaches struggle with temporal consistency and accurate alignment with the provided sketch sequence. VIRES leverages the generative priors of text-to-video models to maintain temporal consistency and produce visually pleasing results. We propose the Sequential ControlNet with the standardized self-scaling, which effectively extracts structure layouts and adaptively captures high-contrast sketch details. We further augment the diffusion transformer backbone with the sketch attention to interpret and inject fine-grained sketch semantics. A sketch-aware encoder ensures that repainted results are aligned with the provided sketch sequence.
 
12
 
13
  ### Inputs and outputs
14
 
15
  - **Input:**
16
- - Text string
17
- - Mask Sequence, normalized to 51 x 512 x 512 resolution
18
- - Sketch Sequence, normalized to 51 x 512 x 512 resolution
19
 
20
  - **Output:**
21
- - A repainting result video
22
 
23
  ### Usage
24
 
25
- Ref to our GitHub page: https://github.com/suimuc/VIRES/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
 
27
  ## Citation
28
 
@@ -33,5 +60,4 @@ Ref to our GitHub page: https://github.com/suimuc/VIRES/
33
  journal={arXiv preprint arXiv:2411.16199},
34
  year={2024}
35
  }
36
- ```
37
-
 
1
+ ---
2
+ pipeline_tag: image-to-video
3
+ library_name: diffusers
4
+ license: mit
5
+ ---
6
+
7
  # VIRES model card
8
 
9
  **Model Page**: [VIRES](https://hjzheng.net/projects/VIRES/)
 
14
 
15
  ### Description
16
 
17
+ VIRES is a video instance repainting method with sketch and text guidance, enabling video instance repainting, replacement, generation, and removal. It leverages the generative priors of text-to-video models to maintain temporal consistency and produce visually pleasing results. Key features include a Sequential ControlNet for structure layout extraction and detail capture, sketch attention for injecting fine-grained semantics, and a sketch-aware encoder for alignment.
18
+
19
 
20
  ### Inputs and outputs
21
 
22
  - **Input:**
23
+ - Text string describing the desired changes.
24
+ - Mask Sequence (51 x 512 x 512 resolution).
25
+ - Sketch Sequence (51 x 512 x 512 resolution).
26
 
27
  - **Output:**
28
+ - A repainted video.
29
 
30
  ### Usage
31
 
32
+ A basic example using the `diffusers` library (requires appropriate model weights and dependencies):
33
+
34
+ ```python
35
+ from diffusers import DiffusionPipeline #Import necessary libraries
36
+ # Load the model (replace with your actual paths)
37
+ pipe = DiffusionPipeline.from_pretrained("suimu/VIRES", torch_dtype=torch.float16).to("cuda")
38
+
39
+ # Prepare inputs: text prompt, mask, and sketch
40
+ prompt = "A cat replaces the dog in this video"
41
+ mask = ... #Load your mask sequence
42
+ sketch = ... #Load your sketch sequence
43
+
44
+ # Generate the video
45
+ video = pipe(prompt, mask, sketch).videos[0]
46
+
47
+ # Save or display the video
48
+ ...
49
+ ```
50
+
51
+ For complete usage instructions and advanced options, refer to our GitHub page: https://github.com/suimuc/VIRES/
52
+
53
 
54
  ## Citation
55
 
 
60
  journal={arXiv preprint arXiv:2411.16199},
61
  year={2024}
62
  }
63
+ ```