Update visual_foundation_models.py
Browse files- visual_foundation_models.py +0 -892
visual_foundation_models.py
CHANGED
@@ -1,892 +0,0 @@
|
|
1 |
-
from diffusers import StableDiffusionPipeline, StableDiffusionInpaintPipeline, StableDiffusionInstructPix2PixPipeline
|
2 |
-
from diffusers import EulerAncestralDiscreteScheduler
|
3 |
-
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
|
4 |
-
from controlnet_aux import OpenposeDetector, MLSDdetector, HEDdetector
|
5 |
-
|
6 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, CLIPSegProcessor, CLIPSegForImageSegmentation
|
7 |
-
from transformers import pipeline, BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering
|
8 |
-
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
|
9 |
-
|
10 |
-
import os
|
11 |
-
import random
|
12 |
-
import torch
|
13 |
-
import cv2
|
14 |
-
import uuid
|
15 |
-
from PIL import Image, ImageOps
|
16 |
-
import numpy as np
|
17 |
-
from pytorch_lightning import seed_everything
|
18 |
-
import math
|
19 |
-
|
20 |
-
from langchain.llms.openai import OpenAI
|
21 |
-
|
22 |
-
def prompts(name, description):
|
23 |
-
def decorator(func):
|
24 |
-
func.name = name
|
25 |
-
func.description = description
|
26 |
-
return func
|
27 |
-
|
28 |
-
return decorator
|
29 |
-
|
30 |
-
def blend_gt2pt(old_image, new_image, sigma=0.15, steps=100):
|
31 |
-
new_size = new_image.size
|
32 |
-
old_size = old_image.size
|
33 |
-
easy_img = np.array(new_image)
|
34 |
-
gt_img_array = np.array(old_image)
|
35 |
-
pos_w = (new_size[0] - old_size[0]) // 2
|
36 |
-
pos_h = (new_size[1] - old_size[1]) // 2
|
37 |
-
|
38 |
-
kernel_h = cv2.getGaussianKernel(old_size[1], old_size[1] * sigma)
|
39 |
-
kernel_w = cv2.getGaussianKernel(old_size[0], old_size[0] * sigma)
|
40 |
-
kernel = np.multiply(kernel_h, np.transpose(kernel_w))
|
41 |
-
|
42 |
-
kernel[steps:-steps, steps:-steps] = 1
|
43 |
-
kernel[:steps, :steps] = kernel[:steps, :steps] / kernel[steps - 1, steps - 1]
|
44 |
-
kernel[:steps, -steps:] = kernel[:steps, -steps:] / kernel[steps - 1, -(steps)]
|
45 |
-
kernel[-steps:, :steps] = kernel[-steps:, :steps] / kernel[-steps, steps - 1]
|
46 |
-
kernel[-steps:, -steps:] = kernel[-steps:, -steps:] / kernel[-steps, -steps]
|
47 |
-
kernel = np.expand_dims(kernel, 2)
|
48 |
-
kernel = np.repeat(kernel, 3, 2)
|
49 |
-
|
50 |
-
weight = np.linspace(0, 1, steps)
|
51 |
-
top = np.expand_dims(weight, 1)
|
52 |
-
top = np.repeat(top, old_size[0] - 2 * steps, 1)
|
53 |
-
top = np.expand_dims(top, 2)
|
54 |
-
top = np.repeat(top, 3, 2)
|
55 |
-
|
56 |
-
weight = np.linspace(1, 0, steps)
|
57 |
-
down = np.expand_dims(weight, 1)
|
58 |
-
down = np.repeat(down, old_size[0] - 2 * steps, 1)
|
59 |
-
down = np.expand_dims(down, 2)
|
60 |
-
down = np.repeat(down, 3, 2)
|
61 |
-
|
62 |
-
weight = np.linspace(0, 1, steps)
|
63 |
-
left = np.expand_dims(weight, 0)
|
64 |
-
left = np.repeat(left, old_size[1] - 2 * steps, 0)
|
65 |
-
left = np.expand_dims(left, 2)
|
66 |
-
left = np.repeat(left, 3, 2)
|
67 |
-
|
68 |
-
weight = np.linspace(1, 0, steps)
|
69 |
-
right = np.expand_dims(weight, 0)
|
70 |
-
right = np.repeat(right, old_size[1] - 2 * steps, 0)
|
71 |
-
right = np.expand_dims(right, 2)
|
72 |
-
right = np.repeat(right, 3, 2)
|
73 |
-
|
74 |
-
kernel[:steps, steps:-steps] = top
|
75 |
-
kernel[-steps:, steps:-steps] = down
|
76 |
-
kernel[steps:-steps, :steps] = left
|
77 |
-
kernel[steps:-steps, -steps:] = right
|
78 |
-
|
79 |
-
pt_gt_img = easy_img[pos_h:pos_h + old_size[1], pos_w:pos_w + old_size[0]]
|
80 |
-
gaussian_gt_img = kernel * gt_img_array + (1 - kernel) * pt_gt_img # gt img with blur img
|
81 |
-
gaussian_gt_img = gaussian_gt_img.astype(np.int64)
|
82 |
-
easy_img[pos_h:pos_h + old_size[1], pos_w:pos_w + old_size[0]] = gaussian_gt_img
|
83 |
-
gaussian_img = Image.fromarray(easy_img)
|
84 |
-
return gaussian_img
|
85 |
-
|
86 |
-
def get_new_image_name(org_img_name, func_name="update"):
|
87 |
-
head_tail = os.path.split(org_img_name)
|
88 |
-
head = head_tail[0]
|
89 |
-
tail = head_tail[1]
|
90 |
-
name_split = tail.split('.')[0].split('_')
|
91 |
-
this_new_uuid = str(uuid.uuid4())[0:4]
|
92 |
-
if len(name_split) == 1:
|
93 |
-
most_org_file_name = name_split[0]
|
94 |
-
recent_prev_file_name = name_split[0]
|
95 |
-
new_file_name = '{}_{}_{}_{}.png'.format(this_new_uuid, func_name, recent_prev_file_name, most_org_file_name)
|
96 |
-
else:
|
97 |
-
assert len(name_split) == 4
|
98 |
-
most_org_file_name = name_split[3]
|
99 |
-
recent_prev_file_name = name_split[0]
|
100 |
-
new_file_name = '{}_{}_{}_{}.png'.format(this_new_uuid, func_name, recent_prev_file_name, most_org_file_name)
|
101 |
-
return os.path.join(head, new_file_name)
|
102 |
-
|
103 |
-
|
104 |
-
class MaskFormer:
|
105 |
-
def __init__(self, device):
|
106 |
-
print(f"Initializing MaskFormer to {device}")
|
107 |
-
self.device = device
|
108 |
-
self.processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
|
109 |
-
self.model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined").to(device)
|
110 |
-
|
111 |
-
def inference(self, image_path, text):
|
112 |
-
threshold = 0.5
|
113 |
-
min_area = 0.02
|
114 |
-
padding = 20
|
115 |
-
original_image = Image.open(image_path)
|
116 |
-
image = original_image.resize((512, 512))
|
117 |
-
inputs = self.processor(text=text, images=image, padding="max_length", return_tensors="pt").to(self.device)
|
118 |
-
with torch.no_grad():
|
119 |
-
outputs = self.model(**inputs)
|
120 |
-
mask = torch.sigmoid(outputs[0]).squeeze().cpu().numpy() > threshold
|
121 |
-
area_ratio = len(np.argwhere(mask)) / (mask.shape[0] * mask.shape[1])
|
122 |
-
if area_ratio < min_area:
|
123 |
-
return None
|
124 |
-
true_indices = np.argwhere(mask)
|
125 |
-
mask_array = np.zeros_like(mask, dtype=bool)
|
126 |
-
for idx in true_indices:
|
127 |
-
padded_slice = tuple(slice(max(0, i - padding), i + padding + 1) for i in idx)
|
128 |
-
mask_array[padded_slice] = True
|
129 |
-
visual_mask = (mask_array * 255).astype(np.uint8)
|
130 |
-
image_mask = Image.fromarray(visual_mask)
|
131 |
-
return image_mask.resize(original_image.size)
|
132 |
-
|
133 |
-
|
134 |
-
class ImageEditing:
|
135 |
-
def __init__(self, device):
|
136 |
-
print(f"Initializing ImageEditing to {device}")
|
137 |
-
self.device = device
|
138 |
-
self.mask_former = MaskFormer(device=self.device)
|
139 |
-
self.revision = 'fp16' if 'cuda' in device else None
|
140 |
-
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
|
141 |
-
self.inpaint = StableDiffusionInpaintPipeline.from_pretrained(
|
142 |
-
"runwayml/stable-diffusion-inpainting", revision=self.revision, torch_dtype=self.torch_dtype).to(device)
|
143 |
-
|
144 |
-
@prompts(name="Remove Something From The Photo",
|
145 |
-
description="useful when you want to remove and object or something from the photo "
|
146 |
-
"from its description or location. "
|
147 |
-
"The input to this tool should be a comma separated string of two, "
|
148 |
-
"representing the image_path and the object need to be removed. ")
|
149 |
-
def inference_remove(self, inputs):
|
150 |
-
image_path, to_be_removed_txt = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
151 |
-
return self.inference_replace(f"{image_path},{to_be_removed_txt},background")
|
152 |
-
|
153 |
-
@prompts(name="Replace Something From The Photo",
|
154 |
-
description="useful when you want to replace an object from the object description or "
|
155 |
-
"location with another object from its description. "
|
156 |
-
"The input to this tool should be a comma separated string of three, "
|
157 |
-
"representing the image_path, the object to be replaced, the object to be replaced with ")
|
158 |
-
def inference_replace(self, inputs):
|
159 |
-
image_path, to_be_replaced_txt, replace_with_txt = inputs.split(",")
|
160 |
-
original_image = Image.open(image_path)
|
161 |
-
original_size = original_image.size
|
162 |
-
mask_image = self.mask_former.inference(image_path, to_be_replaced_txt)
|
163 |
-
updated_image = self.inpaint(prompt=replace_with_txt, image=original_image.resize((512, 512)),
|
164 |
-
mask_image=mask_image.resize((512, 512))).images[0]
|
165 |
-
updated_image_path = get_new_image_name(image_path, func_name="replace-something")
|
166 |
-
updated_image = updated_image.resize(original_size)
|
167 |
-
updated_image.save(updated_image_path)
|
168 |
-
print(
|
169 |
-
f"\nProcessed ImageEditing, Input Image: {image_path}, Replace {to_be_replaced_txt} to {replace_with_txt}, "
|
170 |
-
f"Output Image: {updated_image_path}")
|
171 |
-
return updated_image_path
|
172 |
-
|
173 |
-
|
174 |
-
class InstructPix2Pix:
|
175 |
-
def __init__(self, device):
|
176 |
-
print(f"Initializing InstructPix2Pix to {device}")
|
177 |
-
self.device = device
|
178 |
-
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
|
179 |
-
self.pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained("timbrooks/instruct-pix2pix",
|
180 |
-
safety_checker=None,
|
181 |
-
torch_dtype=self.torch_dtype).to(device)
|
182 |
-
self.pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(self.pipe.scheduler.config)
|
183 |
-
|
184 |
-
@prompts(name="Instruct Image Using Text",
|
185 |
-
description="useful when you want to the style of the image to be like the text. "
|
186 |
-
"like: make it look like a painting. or make it like a robot. "
|
187 |
-
"The input to this tool should be a comma separated string of two, "
|
188 |
-
"representing the image_path and the text. ")
|
189 |
-
def inference(self, inputs):
|
190 |
-
"""Change style of image."""
|
191 |
-
print("===>Starting InstructPix2Pix Inference")
|
192 |
-
image_path, text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
193 |
-
original_image = Image.open(image_path)
|
194 |
-
image = self.pipe(text, image=original_image, num_inference_steps=40, image_guidance_scale=1.2).images[0]
|
195 |
-
updated_image_path = get_new_image_name(image_path, func_name="pix2pix")
|
196 |
-
image.save(updated_image_path)
|
197 |
-
print(f"\nProcessed InstructPix2Pix, Input Image: {image_path}, Instruct Text: {text}, "
|
198 |
-
f"Output Image: {updated_image_path}")
|
199 |
-
return updated_image_path
|
200 |
-
|
201 |
-
|
202 |
-
class Text2Image:
|
203 |
-
def __init__(self, device):
|
204 |
-
print(f"Initializing Text2Image to {device}")
|
205 |
-
self.device = device
|
206 |
-
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
|
207 |
-
self.pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5",
|
208 |
-
torch_dtype=self.torch_dtype)
|
209 |
-
self.pipe.to(device)
|
210 |
-
self.a_prompt = 'best quality, extremely detailed'
|
211 |
-
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
|
212 |
-
'fewer digits, cropped, worst quality, low quality'
|
213 |
-
|
214 |
-
@prompts(name="Generate Image From User Input Text",
|
215 |
-
description="useful when you want to generate an image from a user input text and save it to a file. "
|
216 |
-
"like: generate an image of an object or something, or generate an image that includes some objects. "
|
217 |
-
"The input to this tool should be a string, representing the text used to generate image. ")
|
218 |
-
def inference(self, text):
|
219 |
-
image_filename = os.path.join('image', f"{str(uuid.uuid4())[:8]}.png")
|
220 |
-
prompt = text + ', ' + self.a_prompt
|
221 |
-
image = self.pipe(prompt, negative_prompt=self.n_prompt).images[0]
|
222 |
-
image.save(image_filename)
|
223 |
-
print(
|
224 |
-
f"\nProcessed Text2Image, Input Text: {text}, Output Image: {image_filename}")
|
225 |
-
return image_filename
|
226 |
-
|
227 |
-
|
228 |
-
class ImageCaptioning:
|
229 |
-
def __init__(self, device):
|
230 |
-
print(f"Initializing ImageCaptioning to {device}")
|
231 |
-
self.device = device
|
232 |
-
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
|
233 |
-
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
234 |
-
self.model = BlipForConditionalGeneration.from_pretrained(
|
235 |
-
"Salesforce/blip-image-captioning-base", torch_dtype=self.torch_dtype).to(self.device)
|
236 |
-
|
237 |
-
@prompts(name="Get Photo Description",
|
238 |
-
description="useful when you want to know what is inside the photo. receives image_path as input. "
|
239 |
-
"The input to this tool should be a string, representing the image_path. ")
|
240 |
-
def inference(self, image_path):
|
241 |
-
inputs = self.processor(Image.open(image_path), return_tensors="pt").to(self.device, self.torch_dtype)
|
242 |
-
out = self.model.generate(**inputs)
|
243 |
-
captions = self.processor.decode(out[0], skip_special_tokens=True)
|
244 |
-
print(f"\nProcessed ImageCaptioning, Input Image: {image_path}, Output Text: {captions}")
|
245 |
-
return captions
|
246 |
-
|
247 |
-
|
248 |
-
class Image2Canny:
|
249 |
-
def __init__(self, device):
|
250 |
-
print("Initializing Image2Canny")
|
251 |
-
self.low_threshold = 100
|
252 |
-
self.high_threshold = 200
|
253 |
-
|
254 |
-
@prompts(name="Edge Detection On Image",
|
255 |
-
description="useful when you want to detect the edge of the image. "
|
256 |
-
"like: detect the edges of this image, or canny detection on image, "
|
257 |
-
"or perform edge detection on this image, or detect the canny image of this image. "
|
258 |
-
"The input to this tool should be a string, representing the image_path")
|
259 |
-
def inference(self, inputs):
|
260 |
-
image = Image.open(inputs)
|
261 |
-
image = np.array(image)
|
262 |
-
canny = cv2.Canny(image, self.low_threshold, self.high_threshold)
|
263 |
-
canny = canny[:, :, None]
|
264 |
-
canny = np.concatenate([canny, canny, canny], axis=2)
|
265 |
-
canny = Image.fromarray(canny)
|
266 |
-
updated_image_path = get_new_image_name(inputs, func_name="edge")
|
267 |
-
canny.save(updated_image_path)
|
268 |
-
print(f"\nProcessed Image2Canny, Input Image: {inputs}, Output Text: {updated_image_path}")
|
269 |
-
return updated_image_path
|
270 |
-
|
271 |
-
|
272 |
-
class CannyText2Image:
|
273 |
-
def __init__(self, device):
|
274 |
-
print(f"Initializing CannyText2Image to {device}")
|
275 |
-
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
|
276 |
-
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-canny",
|
277 |
-
torch_dtype=self.torch_dtype)
|
278 |
-
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
279 |
-
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
|
280 |
-
torch_dtype=self.torch_dtype)
|
281 |
-
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
|
282 |
-
self.pipe.to(device)
|
283 |
-
self.seed = -1
|
284 |
-
self.a_prompt = 'best quality, extremely detailed'
|
285 |
-
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
|
286 |
-
'fewer digits, cropped, worst quality, low quality'
|
287 |
-
|
288 |
-
@prompts(name="Generate Image Condition On Canny Image",
|
289 |
-
description="useful when you want to generate a new real image from both the user description and a canny image."
|
290 |
-
" like: generate a real image of a object or something from this canny image,"
|
291 |
-
" or generate a new real image of a object or something from this edge image. "
|
292 |
-
"The input to this tool should be a comma separated string of two, "
|
293 |
-
"representing the image_path and the user description. ")
|
294 |
-
def inference(self, inputs):
|
295 |
-
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
296 |
-
image = Image.open(image_path)
|
297 |
-
self.seed = random.randint(0, 65535)
|
298 |
-
seed_everything(self.seed)
|
299 |
-
prompt = f'{instruct_text}, {self.a_prompt}'
|
300 |
-
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
|
301 |
-
guidance_scale=9.0).images[0]
|
302 |
-
updated_image_path = get_new_image_name(image_path, func_name="canny2image")
|
303 |
-
image.save(updated_image_path)
|
304 |
-
print(f"\nProcessed CannyText2Image, Input Canny: {image_path}, Input Text: {instruct_text}, "
|
305 |
-
f"Output Text: {updated_image_path}")
|
306 |
-
return updated_image_path
|
307 |
-
|
308 |
-
|
309 |
-
class Image2Line:
|
310 |
-
def __init__(self, device):
|
311 |
-
print("Initializing Image2Line")
|
312 |
-
self.detector = MLSDdetector.from_pretrained('lllyasviel/ControlNet')
|
313 |
-
|
314 |
-
@prompts(name="Line Detection On Image",
|
315 |
-
description="useful when you want to detect the straight line of the image. "
|
316 |
-
"like: detect the straight lines of this image, or straight line detection on image, "
|
317 |
-
"or perform straight line detection on this image, or detect the straight line image of this image. "
|
318 |
-
"The input to this tool should be a string, representing the image_path")
|
319 |
-
def inference(self, inputs):
|
320 |
-
image = Image.open(inputs)
|
321 |
-
mlsd = self.detector(image)
|
322 |
-
updated_image_path = get_new_image_name(inputs, func_name="line-of")
|
323 |
-
mlsd.save(updated_image_path)
|
324 |
-
print(f"\nProcessed Image2Line, Input Image: {inputs}, Output Line: {updated_image_path}")
|
325 |
-
return updated_image_path
|
326 |
-
|
327 |
-
|
328 |
-
class LineText2Image:
|
329 |
-
def __init__(self, device):
|
330 |
-
print(f"Initializing LineText2Image to {device}")
|
331 |
-
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
|
332 |
-
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-mlsd",
|
333 |
-
torch_dtype=self.torch_dtype)
|
334 |
-
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
335 |
-
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
|
336 |
-
torch_dtype=self.torch_dtype
|
337 |
-
)
|
338 |
-
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
|
339 |
-
self.pipe.to(device)
|
340 |
-
self.seed = -1
|
341 |
-
self.a_prompt = 'best quality, extremely detailed'
|
342 |
-
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
|
343 |
-
'fewer digits, cropped, worst quality, low quality'
|
344 |
-
|
345 |
-
@prompts(name="Generate Image Condition On Line Image",
|
346 |
-
description="useful when you want to generate a new real image from both the user description "
|
347 |
-
"and a straight line image. "
|
348 |
-
"like: generate a real image of a object or something from this straight line image, "
|
349 |
-
"or generate a new real image of a object or something from this straight lines. "
|
350 |
-
"The input to this tool should be a comma separated string of two, "
|
351 |
-
"representing the image_path and the user description. ")
|
352 |
-
def inference(self, inputs):
|
353 |
-
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
354 |
-
image = Image.open(image_path)
|
355 |
-
self.seed = random.randint(0, 65535)
|
356 |
-
seed_everything(self.seed)
|
357 |
-
prompt = f'{instruct_text}, {self.a_prompt}'
|
358 |
-
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
|
359 |
-
guidance_scale=9.0).images[0]
|
360 |
-
updated_image_path = get_new_image_name(image_path, func_name="line2image")
|
361 |
-
image.save(updated_image_path)
|
362 |
-
print(f"\nProcessed LineText2Image, Input Line: {image_path}, Input Text: {instruct_text}, "
|
363 |
-
f"Output Text: {updated_image_path}")
|
364 |
-
return updated_image_path
|
365 |
-
|
366 |
-
|
367 |
-
class Image2Hed:
|
368 |
-
def __init__(self, device):
|
369 |
-
print("Initializing Image2Hed")
|
370 |
-
self.detector = HEDdetector.from_pretrained('lllyasviel/ControlNet')
|
371 |
-
|
372 |
-
@prompts(name="Hed Detection On Image",
|
373 |
-
description="useful when you want to detect the soft hed boundary of the image. "
|
374 |
-
"like: detect the soft hed boundary of this image, or hed boundary detection on image, "
|
375 |
-
"or perform hed boundary detection on this image, or detect soft hed boundary image of this image. "
|
376 |
-
"The input to this tool should be a string, representing the image_path")
|
377 |
-
def inference(self, inputs):
|
378 |
-
image = Image.open(inputs)
|
379 |
-
hed = self.detector(image)
|
380 |
-
updated_image_path = get_new_image_name(inputs, func_name="hed-boundary")
|
381 |
-
hed.save(updated_image_path)
|
382 |
-
print(f"\nProcessed Image2Hed, Input Image: {inputs}, Output Hed: {updated_image_path}")
|
383 |
-
return updated_image_path
|
384 |
-
|
385 |
-
|
386 |
-
class HedText2Image:
|
387 |
-
def __init__(self, device):
|
388 |
-
print(f"Initializing HedText2Image to {device}")
|
389 |
-
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
|
390 |
-
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-hed",
|
391 |
-
torch_dtype=self.torch_dtype)
|
392 |
-
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
393 |
-
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
|
394 |
-
torch_dtype=self.torch_dtype
|
395 |
-
)
|
396 |
-
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
|
397 |
-
self.pipe.to(device)
|
398 |
-
self.seed = -1
|
399 |
-
self.a_prompt = 'best quality, extremely detailed'
|
400 |
-
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
|
401 |
-
'fewer digits, cropped, worst quality, low quality'
|
402 |
-
|
403 |
-
@prompts(name="Generate Image Condition On Soft Hed Boundary Image",
|
404 |
-
description="useful when you want to generate a new real image from both the user description "
|
405 |
-
"and a soft hed boundary image. "
|
406 |
-
"like: generate a real image of a object or something from this soft hed boundary image, "
|
407 |
-
"or generate a new real image of a object or something from this hed boundary. "
|
408 |
-
"The input to this tool should be a comma separated string of two, "
|
409 |
-
"representing the image_path and the user description")
|
410 |
-
def inference(self, inputs):
|
411 |
-
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
412 |
-
image = Image.open(image_path)
|
413 |
-
self.seed = random.randint(0, 65535)
|
414 |
-
seed_everything(self.seed)
|
415 |
-
prompt = f'{instruct_text}, {self.a_prompt}'
|
416 |
-
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
|
417 |
-
guidance_scale=9.0).images[0]
|
418 |
-
updated_image_path = get_new_image_name(image_path, func_name="hed2image")
|
419 |
-
image.save(updated_image_path)
|
420 |
-
print(f"\nProcessed HedText2Image, Input Hed: {image_path}, Input Text: {instruct_text}, "
|
421 |
-
f"Output Image: {updated_image_path}")
|
422 |
-
return updated_image_path
|
423 |
-
|
424 |
-
|
425 |
-
class Image2Scribble:
|
426 |
-
def __init__(self, device):
|
427 |
-
print("Initializing Image2Scribble")
|
428 |
-
self.detector = HEDdetector.from_pretrained('lllyasviel/ControlNet')
|
429 |
-
|
430 |
-
@prompts(name="Sketch Detection On Image",
|
431 |
-
description="useful when you want to generate a scribble of the image. "
|
432 |
-
"like: generate a scribble of this image, or generate a sketch from this image, "
|
433 |
-
"detect the sketch from this image. "
|
434 |
-
"The input to this tool should be a string, representing the image_path")
|
435 |
-
def inference(self, inputs):
|
436 |
-
image = Image.open(inputs)
|
437 |
-
scribble = self.detector(image, scribble=True)
|
438 |
-
updated_image_path = get_new_image_name(inputs, func_name="scribble")
|
439 |
-
scribble.save(updated_image_path)
|
440 |
-
print(f"\nProcessed Image2Scribble, Input Image: {inputs}, Output Scribble: {updated_image_path}")
|
441 |
-
return updated_image_path
|
442 |
-
|
443 |
-
|
444 |
-
class ScribbleText2Image:
|
445 |
-
def __init__(self, device):
|
446 |
-
print(f"Initializing ScribbleText2Image to {device}")
|
447 |
-
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
|
448 |
-
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-scribble",
|
449 |
-
torch_dtype=self.torch_dtype)
|
450 |
-
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
451 |
-
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
|
452 |
-
torch_dtype=self.torch_dtype
|
453 |
-
)
|
454 |
-
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
|
455 |
-
self.pipe.to(device)
|
456 |
-
self.seed = -1
|
457 |
-
self.a_prompt = 'best quality, extremely detailed'
|
458 |
-
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
|
459 |
-
'fewer digits, cropped, worst quality, low quality'
|
460 |
-
|
461 |
-
@prompts(name="Generate Image Condition On Sketch Image",
|
462 |
-
description="useful when you want to generate a new real image from both the user description and "
|
463 |
-
"a scribble image or a sketch image. "
|
464 |
-
"The input to this tool should be a comma separated string of two, "
|
465 |
-
"representing the image_path and the user description")
|
466 |
-
def inference(self, inputs):
|
467 |
-
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
468 |
-
image = Image.open(image_path)
|
469 |
-
self.seed = random.randint(0, 65535)
|
470 |
-
seed_everything(self.seed)
|
471 |
-
prompt = f'{instruct_text}, {self.a_prompt}'
|
472 |
-
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
|
473 |
-
guidance_scale=9.0).images[0]
|
474 |
-
updated_image_path = get_new_image_name(image_path, func_name="scribble2image")
|
475 |
-
image.save(updated_image_path)
|
476 |
-
print(f"\nProcessed ScribbleText2Image, Input Scribble: {image_path}, Input Text: {instruct_text}, "
|
477 |
-
f"Output Image: {updated_image_path}")
|
478 |
-
return updated_image_path
|
479 |
-
|
480 |
-
|
481 |
-
class Image2Pose:
|
482 |
-
def __init__(self, device):
|
483 |
-
print("Initializing Image2Pose")
|
484 |
-
self.detector = OpenposeDetector.from_pretrained('lllyasviel/ControlNet')
|
485 |
-
|
486 |
-
@prompts(name="Pose Detection On Image",
|
487 |
-
description="useful when you want to detect the human pose of the image. "
|
488 |
-
"like: generate human poses of this image, or generate a pose image from this image. "
|
489 |
-
"The input to this tool should be a string, representing the image_path")
|
490 |
-
def inference(self, inputs):
|
491 |
-
image = Image.open(inputs)
|
492 |
-
pose = self.detector(image)
|
493 |
-
updated_image_path = get_new_image_name(inputs, func_name="human-pose")
|
494 |
-
pose.save(updated_image_path)
|
495 |
-
print(f"\nProcessed Image2Pose, Input Image: {inputs}, Output Pose: {updated_image_path}")
|
496 |
-
return updated_image_path
|
497 |
-
|
498 |
-
|
499 |
-
class PoseText2Image:
|
500 |
-
def __init__(self, device):
|
501 |
-
print(f"Initializing PoseText2Image to {device}")
|
502 |
-
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
|
503 |
-
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-openpose",
|
504 |
-
torch_dtype=self.torch_dtype)
|
505 |
-
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
506 |
-
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
|
507 |
-
torch_dtype=self.torch_dtype)
|
508 |
-
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
|
509 |
-
self.pipe.to(device)
|
510 |
-
self.num_inference_steps = 20
|
511 |
-
self.seed = -1
|
512 |
-
self.unconditional_guidance_scale = 9.0
|
513 |
-
self.a_prompt = 'best quality, extremely detailed'
|
514 |
-
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \
|
515 |
-
' fewer digits, cropped, worst quality, low quality'
|
516 |
-
|
517 |
-
@prompts(name="Generate Image Condition On Pose Image",
|
518 |
-
description="useful when you want to generate a new real image from both the user description "
|
519 |
-
"and a human pose image. "
|
520 |
-
"like: generate a real image of a human from this human pose image, "
|
521 |
-
"or generate a new real image of a human from this pose. "
|
522 |
-
"The input to this tool should be a comma separated string of two, "
|
523 |
-
"representing the image_path and the user description")
|
524 |
-
def inference(self, inputs):
|
525 |
-
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
526 |
-
image = Image.open(image_path)
|
527 |
-
self.seed = random.randint(0, 65535)
|
528 |
-
seed_everything(self.seed)
|
529 |
-
prompt = f'{instruct_text}, {self.a_prompt}'
|
530 |
-
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
|
531 |
-
guidance_scale=9.0).images[0]
|
532 |
-
updated_image_path = get_new_image_name(image_path, func_name="pose2image")
|
533 |
-
image.save(updated_image_path)
|
534 |
-
print(f"\nProcessed PoseText2Image, Input Pose: {image_path}, Input Text: {instruct_text}, "
|
535 |
-
f"Output Image: {updated_image_path}")
|
536 |
-
return updated_image_path
|
537 |
-
|
538 |
-
|
539 |
-
class Image2Seg:
|
540 |
-
def __init__(self, device):
|
541 |
-
print("Initializing Image2Seg")
|
542 |
-
self.image_processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-small")
|
543 |
-
self.image_segmentor = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-small")
|
544 |
-
self.ade_palette = [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
|
545 |
-
[4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255],
|
546 |
-
[230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7],
|
547 |
-
[150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82],
|
548 |
-
[143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3],
|
549 |
-
[0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
|
550 |
-
[255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220],
|
551 |
-
[255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224],
|
552 |
-
[255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255],
|
553 |
-
[224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7],
|
554 |
-
[255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
|
555 |
-
[6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255],
|
556 |
-
[140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0],
|
557 |
-
[255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255],
|
558 |
-
[255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255],
|
559 |
-
[11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
|
560 |
-
[0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0],
|
561 |
-
[255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0],
|
562 |
-
[0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255],
|
563 |
-
[173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255],
|
564 |
-
[255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
|
565 |
-
[255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255],
|
566 |
-
[255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255],
|
567 |
-
[0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255],
|
568 |
-
[0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0],
|
569 |
-
[143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
|
570 |
-
[8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255],
|
571 |
-
[255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112],
|
572 |
-
[92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160],
|
573 |
-
[163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163],
|
574 |
-
[255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
|
575 |
-
[255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0],
|
576 |
-
[10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255],
|
577 |
-
[255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204],
|
578 |
-
[41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255],
|
579 |
-
[71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
|
580 |
-
[184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194],
|
581 |
-
[102, 255, 0], [92, 0, 255]]
|
582 |
-
|
583 |
-
@prompts(name="Segmentation On Image",
|
584 |
-
description="useful when you want to detect segmentations of the image. "
|
585 |
-
"like: segment this image, or generate segmentations on this image, "
|
586 |
-
"or perform segmentation on this image. "
|
587 |
-
"The input to this tool should be a string, representing the image_path")
|
588 |
-
def inference(self, inputs):
|
589 |
-
image = Image.open(inputs)
|
590 |
-
pixel_values = self.image_processor(image, return_tensors="pt").pixel_values
|
591 |
-
with torch.no_grad():
|
592 |
-
outputs = self.image_segmentor(pixel_values)
|
593 |
-
seg = self.image_processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
|
594 |
-
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3
|
595 |
-
palette = np.array(self.ade_palette)
|
596 |
-
for label, color in enumerate(palette):
|
597 |
-
color_seg[seg == label, :] = color
|
598 |
-
color_seg = color_seg.astype(np.uint8)
|
599 |
-
segmentation = Image.fromarray(color_seg)
|
600 |
-
updated_image_path = get_new_image_name(inputs, func_name="segmentation")
|
601 |
-
segmentation.save(updated_image_path)
|
602 |
-
print(f"\nProcessed Image2Seg, Input Image: {inputs}, Output Pose: {updated_image_path}")
|
603 |
-
return updated_image_path
|
604 |
-
|
605 |
-
|
606 |
-
class SegText2Image:
|
607 |
-
def __init__(self, device):
|
608 |
-
print(f"Initializing SegText2Image to {device}")
|
609 |
-
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
|
610 |
-
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-seg",
|
611 |
-
torch_dtype=self.torch_dtype)
|
612 |
-
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
613 |
-
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
|
614 |
-
torch_dtype=self.torch_dtype)
|
615 |
-
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
|
616 |
-
self.pipe.to(device)
|
617 |
-
self.seed = -1
|
618 |
-
self.a_prompt = 'best quality, extremely detailed'
|
619 |
-
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \
|
620 |
-
' fewer digits, cropped, worst quality, low quality'
|
621 |
-
|
622 |
-
@prompts(name="Generate Image Condition On Segmentations",
|
623 |
-
description="useful when you want to generate a new real image from both the user description and segmentations. "
|
624 |
-
"like: generate a real image of a object or something from this segmentation image, "
|
625 |
-
"or generate a new real image of a object or something from these segmentations. "
|
626 |
-
"The input to this tool should be a comma separated string of two, "
|
627 |
-
"representing the image_path and the user description")
|
628 |
-
def inference(self, inputs):
|
629 |
-
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
630 |
-
image = Image.open(image_path)
|
631 |
-
self.seed = random.randint(0, 65535)
|
632 |
-
seed_everything(self.seed)
|
633 |
-
prompt = f'{instruct_text}, {self.a_prompt}'
|
634 |
-
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
|
635 |
-
guidance_scale=9.0).images[0]
|
636 |
-
updated_image_path = get_new_image_name(image_path, func_name="segment2image")
|
637 |
-
image.save(updated_image_path)
|
638 |
-
print(f"\nProcessed SegText2Image, Input Seg: {image_path}, Input Text: {instruct_text}, "
|
639 |
-
f"Output Image: {updated_image_path}")
|
640 |
-
return updated_image_path
|
641 |
-
|
642 |
-
|
643 |
-
class Image2Depth:
|
644 |
-
def __init__(self, device):
|
645 |
-
print("Initializing Image2Depth")
|
646 |
-
self.depth_estimator = pipeline('depth-estimation')
|
647 |
-
|
648 |
-
@prompts(name="Predict Depth On Image",
|
649 |
-
description="useful when you want to detect depth of the image. like: generate the depth from this image, "
|
650 |
-
"or detect the depth map on this image, or predict the depth for this image. "
|
651 |
-
"The input to this tool should be a string, representing the image_path")
|
652 |
-
def inference(self, inputs):
|
653 |
-
image = Image.open(inputs)
|
654 |
-
depth = self.depth_estimator(image)['depth']
|
655 |
-
depth = np.array(depth)
|
656 |
-
depth = depth[:, :, None]
|
657 |
-
depth = np.concatenate([depth, depth, depth], axis=2)
|
658 |
-
depth = Image.fromarray(depth)
|
659 |
-
updated_image_path = get_new_image_name(inputs, func_name="depth")
|
660 |
-
depth.save(updated_image_path)
|
661 |
-
print(f"\nProcessed Image2Depth, Input Image: {inputs}, Output Depth: {updated_image_path}")
|
662 |
-
return updated_image_path
|
663 |
-
|
664 |
-
|
665 |
-
class DepthText2Image:
|
666 |
-
def __init__(self, device):
|
667 |
-
print(f"Initializing DepthText2Image to {device}")
|
668 |
-
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
|
669 |
-
self.controlnet = ControlNetModel.from_pretrained(
|
670 |
-
"fusing/stable-diffusion-v1-5-controlnet-depth", torch_dtype=self.torch_dtype)
|
671 |
-
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
672 |
-
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
|
673 |
-
torch_dtype=self.torch_dtype)
|
674 |
-
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
|
675 |
-
self.pipe.to(device)
|
676 |
-
self.seed = -1
|
677 |
-
self.a_prompt = 'best quality, extremely detailed'
|
678 |
-
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \
|
679 |
-
' fewer digits, cropped, worst quality, low quality'
|
680 |
-
|
681 |
-
@prompts(name="Generate Image Condition On Depth",
|
682 |
-
description="useful when you want to generate a new real image from both the user description and depth image. "
|
683 |
-
"like: generate a real image of a object or something from this depth image, "
|
684 |
-
"or generate a new real image of a object or something from the depth map. "
|
685 |
-
"The input to this tool should be a comma separated string of two, "
|
686 |
-
"representing the image_path and the user description")
|
687 |
-
def inference(self, inputs):
|
688 |
-
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
689 |
-
image = Image.open(image_path)
|
690 |
-
self.seed = random.randint(0, 65535)
|
691 |
-
seed_everything(self.seed)
|
692 |
-
prompt = f'{instruct_text}, {self.a_prompt}'
|
693 |
-
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
|
694 |
-
guidance_scale=9.0).images[0]
|
695 |
-
updated_image_path = get_new_image_name(image_path, func_name="depth2image")
|
696 |
-
image.save(updated_image_path)
|
697 |
-
print(f"\nProcessed DepthText2Image, Input Depth: {image_path}, Input Text: {instruct_text}, "
|
698 |
-
f"Output Image: {updated_image_path}")
|
699 |
-
return updated_image_path
|
700 |
-
|
701 |
-
|
702 |
-
class Image2Normal:
|
703 |
-
def __init__(self, device):
|
704 |
-
print("Initializing Image2Normal")
|
705 |
-
self.depth_estimator = pipeline("depth-estimation", model="Intel/dpt-hybrid-midas")
|
706 |
-
self.bg_threhold = 0.4
|
707 |
-
|
708 |
-
@prompts(name="Predict Normal Map On Image",
|
709 |
-
description="useful when you want to detect norm map of the image. "
|
710 |
-
"like: generate normal map from this image, or predict normal map of this image. "
|
711 |
-
"The input to this tool should be a string, representing the image_path")
|
712 |
-
def inference(self, inputs):
|
713 |
-
image = Image.open(inputs)
|
714 |
-
original_size = image.size
|
715 |
-
image = self.depth_estimator(image)['predicted_depth'][0]
|
716 |
-
image = image.numpy()
|
717 |
-
image_depth = image.copy()
|
718 |
-
image_depth -= np.min(image_depth)
|
719 |
-
image_depth /= np.max(image_depth)
|
720 |
-
x = cv2.Sobel(image, cv2.CV_32F, 1, 0, ksize=3)
|
721 |
-
x[image_depth < self.bg_threhold] = 0
|
722 |
-
y = cv2.Sobel(image, cv2.CV_32F, 0, 1, ksize=3)
|
723 |
-
y[image_depth < self.bg_threhold] = 0
|
724 |
-
z = np.ones_like(x) * np.pi * 2.0
|
725 |
-
image = np.stack([x, y, z], axis=2)
|
726 |
-
image /= np.sum(image ** 2.0, axis=2, keepdims=True) ** 0.5
|
727 |
-
image = (image * 127.5 + 127.5).clip(0, 255).astype(np.uint8)
|
728 |
-
image = Image.fromarray(image)
|
729 |
-
image = image.resize(original_size)
|
730 |
-
updated_image_path = get_new_image_name(inputs, func_name="normal-map")
|
731 |
-
image.save(updated_image_path)
|
732 |
-
print(f"\nProcessed Image2Normal, Input Image: {inputs}, Output Depth: {updated_image_path}")
|
733 |
-
return updated_image_path
|
734 |
-
|
735 |
-
|
736 |
-
class NormalText2Image:
|
737 |
-
def __init__(self, device):
|
738 |
-
print(f"Initializing NormalText2Image to {device}")
|
739 |
-
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
|
740 |
-
self.controlnet = ControlNetModel.from_pretrained(
|
741 |
-
"fusing/stable-diffusion-v1-5-controlnet-normal", torch_dtype=self.torch_dtype)
|
742 |
-
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
743 |
-
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
|
744 |
-
torch_dtype=self.torch_dtype)
|
745 |
-
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
|
746 |
-
self.pipe.to(device)
|
747 |
-
self.seed = -1
|
748 |
-
self.a_prompt = 'best quality, extremely detailed'
|
749 |
-
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \
|
750 |
-
' fewer digits, cropped, worst quality, low quality'
|
751 |
-
|
752 |
-
@prompts(name="Generate Image Condition On Normal Map",
|
753 |
-
description="useful when you want to generate a new real image from both the user description and normal map. "
|
754 |
-
"like: generate a real image of a object or something from this normal map, "
|
755 |
-
"or generate a new real image of a object or something from the normal map. "
|
756 |
-
"The input to this tool should be a comma separated string of two, "
|
757 |
-
"representing the image_path and the user description")
|
758 |
-
def inference(self, inputs):
|
759 |
-
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
760 |
-
image = Image.open(image_path)
|
761 |
-
self.seed = random.randint(0, 65535)
|
762 |
-
seed_everything(self.seed)
|
763 |
-
prompt = f'{instruct_text}, {self.a_prompt}'
|
764 |
-
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
|
765 |
-
guidance_scale=9.0).images[0]
|
766 |
-
updated_image_path = get_new_image_name(image_path, func_name="normal2image")
|
767 |
-
image.save(updated_image_path)
|
768 |
-
print(f"\nProcessed NormalText2Image, Input Normal: {image_path}, Input Text: {instruct_text}, "
|
769 |
-
f"Output Image: {updated_image_path}")
|
770 |
-
return updated_image_path
|
771 |
-
|
772 |
-
|
773 |
-
class VisualQuestionAnswering:
|
774 |
-
def __init__(self, device):
|
775 |
-
print(f"Initializing VisualQuestionAnswering to {device}")
|
776 |
-
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
|
777 |
-
self.device = device
|
778 |
-
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base")
|
779 |
-
self.model = BlipForQuestionAnswering.from_pretrained(
|
780 |
-
"Salesforce/blip-vqa-base", torch_dtype=self.torch_dtype).to(self.device)
|
781 |
-
|
782 |
-
@prompts(name="Answer Question About The Image",
|
783 |
-
description="useful when you need an answer for a question based on an image. "
|
784 |
-
"like: what is the background color of the last image, how many cats in this figure, what is in this figure. "
|
785 |
-
"The input to this tool should be a comma separated string of two, representing the image_path and the question")
|
786 |
-
def inference(self, inputs):
|
787 |
-
image_path, question = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
788 |
-
raw_image = Image.open(image_path).convert('RGB')
|
789 |
-
inputs = self.processor(raw_image, question, return_tensors="pt").to(self.device, self.torch_dtype)
|
790 |
-
out = self.model.generate(**inputs)
|
791 |
-
answer = self.processor.decode(out[0], skip_special_tokens=True)
|
792 |
-
print(f"\nProcessed VisualQuestionAnswering, Input Image: {image_path}, Input Question: {question}, "
|
793 |
-
f"Output Answer: {answer}")
|
794 |
-
return answer
|
795 |
-
|
796 |
-
class InfinityOutPainting:
|
797 |
-
template_model = True # Add this line to show this is a template model.
|
798 |
-
def __init__(self, ImageCaptioning, ImageEditing, VisualQuestionAnswering):
|
799 |
-
# self.llm = OpenAI(temperature=0)
|
800 |
-
self.ImageCaption = ImageCaptioning
|
801 |
-
self.ImageEditing = ImageEditing
|
802 |
-
self.ImageVQA = VisualQuestionAnswering
|
803 |
-
self.a_prompt = 'best quality, extremely detailed'
|
804 |
-
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
|
805 |
-
'fewer digits, cropped, worst quality, low quality'
|
806 |
-
|
807 |
-
def get_BLIP_vqa(self, image, question):
|
808 |
-
inputs = self.ImageVQA.processor(image, question, return_tensors="pt").to(self.ImageVQA.device,
|
809 |
-
self.ImageVQA.torch_dtype)
|
810 |
-
out = self.ImageVQA.model.generate(**inputs)
|
811 |
-
answer = self.ImageVQA.processor.decode(out[0], skip_special_tokens=True)
|
812 |
-
print(f"\nProcessed VisualQuestionAnswering, Input Question: {question}, Output Answer: {answer}")
|
813 |
-
return answer
|
814 |
-
|
815 |
-
def get_BLIP_caption(self, image):
|
816 |
-
inputs = self.ImageCaption.processor(image, return_tensors="pt").to(self.ImageCaption.device,
|
817 |
-
self.ImageCaption.torch_dtype)
|
818 |
-
out = self.ImageCaption.model.generate(**inputs)
|
819 |
-
BLIP_caption = self.ImageCaption.processor.decode(out[0], skip_special_tokens=True)
|
820 |
-
return BLIP_caption
|
821 |
-
|
822 |
-
# def check_prompt(self, prompt):
|
823 |
-
# check = f"Here is a paragraph with adjectives. " \
|
824 |
-
# f"{prompt} " \
|
825 |
-
# f"Please change all plural forms in the adjectives to singular forms. "
|
826 |
-
# return self.llm(check)
|
827 |
-
|
828 |
-
def get_imagine_caption(self, image, imagine):
|
829 |
-
BLIP_caption = self.get_BLIP_caption(image)
|
830 |
-
background_color = self.get_BLIP_vqa(image, 'what is the background color of this image')
|
831 |
-
style = self.get_BLIP_vqa(image, 'what is the style of this image')
|
832 |
-
imagine_prompt = f"let's pretend you are an excellent painter and now " \
|
833 |
-
f"there is an incomplete painting with {BLIP_caption} in the center, " \
|
834 |
-
f"please imagine the complete painting and describe it" \
|
835 |
-
f"you should consider the background color is {background_color}, the style is {style}" \
|
836 |
-
f"You should make the painting as vivid and realistic as possible" \
|
837 |
-
f"You can not use words like painting or picture" \
|
838 |
-
f"and you should use no more than 50 words to describe it"
|
839 |
-
# caption = self.llm(imagine_prompt) if imagine else BLIP_caption
|
840 |
-
caption = BLIP_caption
|
841 |
-
# caption = self.check_prompt(caption)
|
842 |
-
print(f'BLIP observation: {BLIP_caption}, ChatGPT imagine to {caption}') if imagine else print(
|
843 |
-
f'Prompt: {caption}')
|
844 |
-
return caption
|
845 |
-
|
846 |
-
def resize_image(self, image, max_size=100000, multiple=8):
|
847 |
-
aspect_ratio = image.size[0] / image.size[1]
|
848 |
-
new_width = int(math.sqrt(max_size * aspect_ratio))
|
849 |
-
new_height = int(new_width / aspect_ratio)
|
850 |
-
new_width, new_height = new_width - (new_width % multiple), new_height - (new_height % multiple)
|
851 |
-
return image.resize((new_width, new_height))
|
852 |
-
|
853 |
-
def dowhile(self, original_img, tosize, expand_ratio, imagine, usr_prompt):
|
854 |
-
old_img = original_img
|
855 |
-
while (old_img.size != tosize):
|
856 |
-
prompt = self.check_prompt(usr_prompt) if usr_prompt else self.get_imagine_caption(old_img, imagine)
|
857 |
-
crop_w = 15 if old_img.size[0] != tosize[0] else 0
|
858 |
-
crop_h = 15 if old_img.size[1] != tosize[1] else 0
|
859 |
-
old_img = ImageOps.crop(old_img, (crop_w, crop_h, crop_w, crop_h))
|
860 |
-
temp_canvas_size = (expand_ratio * old_img.width if expand_ratio * old_img.width < tosize[0] else tosize[0],
|
861 |
-
expand_ratio * old_img.height if expand_ratio * old_img.height < tosize[1] else tosize[
|
862 |
-
1])
|
863 |
-
temp_canvas, temp_mask = Image.new("RGB", temp_canvas_size, color="white"), Image.new("L", temp_canvas_size,
|
864 |
-
color="white")
|
865 |
-
x, y = (temp_canvas.width - old_img.width) // 2, (temp_canvas.height - old_img.height) // 2
|
866 |
-
temp_canvas.paste(old_img, (x, y))
|
867 |
-
temp_mask.paste(0, (x, y, x + old_img.width, y + old_img.height))
|
868 |
-
resized_temp_canvas, resized_temp_mask = self.resize_image(temp_canvas), self.resize_image(temp_mask)
|
869 |
-
image = self.ImageEditing.inpaint(prompt=prompt, image=resized_temp_canvas, mask_image=resized_temp_mask,
|
870 |
-
height=resized_temp_canvas.height, width=resized_temp_canvas.width,
|
871 |
-
num_inference_steps=50).images[0].resize(
|
872 |
-
(temp_canvas.width, temp_canvas.height), Image.ANTIALIAS)
|
873 |
-
image = blend_gt2pt(old_img, image)
|
874 |
-
old_img = image
|
875 |
-
return old_img
|
876 |
-
|
877 |
-
@prompts(name="Extend An Image",
|
878 |
-
description="useful when you need to extend an image into a larger image."
|
879 |
-
"like: extend the image into a resolution of 2048x1024, extend the image into 2048x1024. "
|
880 |
-
"The input to this tool should be a comma separated string of two, representing the image_path and the resolution of widthxheight")
|
881 |
-
def inference(self, inputs):
|
882 |
-
image_path, resolution = inputs.split(',')
|
883 |
-
width, height = resolution.split('x')
|
884 |
-
tosize = (int(width), int(height))
|
885 |
-
image = Image.open(image_path)
|
886 |
-
image = ImageOps.crop(image, (10, 10, 10, 10))
|
887 |
-
out_painted_image = self.dowhile(image, tosize, 4, True, False)
|
888 |
-
updated_image_path = get_new_image_name(image_path, func_name="outpainting")
|
889 |
-
out_painted_image.save(updated_image_path)
|
890 |
-
print(f"\nProcessed InfinityOutPainting, Input Image: {image_path}, Input Resolution: {resolution}, "
|
891 |
-
f"Output Image: {updated_image_path}")
|
892 |
-
return updated_image_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|