summarization / app.py
zoya23's picture
Update app.py
8e16424 verified
raw
history blame
1.59 kB
import streamlit as st
from datasets import load_dataset
from langchain.llms import HuggingFaceEndpoint
from langchain.prompts import FewShotChatMessagePromptTemplate, ChatPromptTemplate
# Load dataset from HuggingFace
@st.cache_data
def load_examples(n=3):
dataset = load_dataset("knkarthick/dialogsum", split="train[:20]")
return [{"dialogue": row["dialogue"], "summary": row["summary"]} for row in dataset.select(range(n))]
examples = load_examples()
# Format examples
example_prompt = ChatPromptTemplate.from_messages([
("human", "Summarize the following dialog:\n\n{dialogue}"),
("ai", "{summary}")
])
# Few-shot setup
few_shot_prompt = FewShotChatMessagePromptTemplate(
examples=examples,
example_prompt=example_prompt,
suffix="Summarize the following dialog:\n\n{dialogue}",
input_variables=["dialogue"],
prefix="The following are examples of dialogues and their summaries."
)
# Load HF summarizer model (Pegasus)
llm = HuggingFaceEndpoint(
repo_id="google/pegasus-xsum",
task="text2text-generation",
model_kwargs={"temperature": 0.3, "max_new_tokens": 128}
)
# Streamlit UI
st.set_page_config(page_title="DialogSum Few-Shot Summarizer", page_icon="🧠")
st.title("🧠 Few-Shot Dialog Summarizer")
st.markdown("Uses real examples from `dialogsum` to guide the summary output.")
user_input = st.text_area("✍️ Paste your dialogue here:", height=200)
if user_input:
messages = few_shot_prompt.format_messages(dialogue=user_input)
response = llm(messages)
st.subheader("πŸ“Œ Summary:")
st.write(response)