import streamlit as st import transformers from transformers import pipeline # Set up model paths (you can later replace these with fine-tuned model folders) model_map = { "BART": "sshleifer/distilbart-cnn-12-6", "T5": "t5-small", "PEGASUS": "google/pegasus-cnn_dailymail" } # App Title st.markdown("

Text Summarization App

", unsafe_allow_html=True) # UI: Mode and Length controls mode = st.radio("Modes", ["Paragraph", "Bullet Points", "Custom"], horizontal=True) length_slider = st.slider("Summary Length", 1, 2, 1, label_visibility="collapsed") length_label = "Short" if length_slider == 1 else "Long" st.markdown(f"Summary Length: **{length_label}**") # Model selection model_choice = st.selectbox("Choose Summarization Model", ["BART", "T5", "PEGASUS"]) # 2-column layout col1, col2 = st.columns(2) # Left Column: Input with col1: st.markdown("### Enter your text:") user_input = st.text_area("", height=300, placeholder="Paste your job description or content here...") # Word count word_count = len(user_input.split()) st.markdown(f"**{word_count} words**") # Summarize Button if st.button("Summarize", use_container_width=True): if not user_input.strip(): st.warning("Please enter text to summarize.") else: # Load model summarizer = pipeline("summarization", model=model_map[model_choice]) # Set length dynamically max_len = 150 if length_label == "Short" else 300 min_len = 40 # Generate summary summary = summarizer(user_input, max_length=max_len, min_length=min_len, do_sample=False)[0]['summary_text'] st.session_state["summary"] = summary # Right Column: Output with col2: st.markdown("### Summary") if "summary" in st.session_state: st.success(st.session_state["summary"]) summary_words = len(st.session_state["summary"].split()) st.markdown(f"📝 1 sentence • {summary_words} words") st.button("Paraphrase Summary") st.download_button("📥 Download Summary", st.session_state["summary"], file_name="summary.txt") else: st.info("Your summary will appear here.")