Spaces:
Sleeping
Sleeping
import streamlit as st | |
import transformers | |
import keybert | |
from transformers import pipeline | |
from keybert import KeyBERT | |
# Load summarizer and keyword model | |
summarizer_bart = pipeline("summarization", model="facebook/bart-large-cnn") | |
kw_model = KeyBERT() | |
# Title | |
st.markdown("<h1 style='text-align: center;'>Text Summarization App</h1>", unsafe_allow_html=True) | |
# Modes | |
mode = st.radio("Modes", ["Paragraph", "Bullet Points", "Custom"], horizontal=True) | |
# Summary length | |
length = st.slider("Summary Length", 1, 2, 1, label_visibility="collapsed") | |
summary_type = "Short" if length == 1 else "Long" | |
st.write(f"Summary Length: **{summary_type}**") | |
# Layout | |
col1, col2 = st.columns(2) | |
with col1: | |
st.markdown("### Paste your text below:") | |
user_input = st.text_area("", height=300, placeholder="Paste job description or any paragraph...") | |
if user_input.strip(): | |
# Extract keywords using KeyBERT | |
keywords = [kw[0] for kw in kw_model.extract_keywords(user_input, top_n=5)] | |
selected_keywords = st.multiselect("Select Keywords", keywords, default=keywords) | |
st.markdown(f"**{len(user_input.split())} words**") | |
if st.button("Summarize", use_container_width=True): | |
summary = summarizer_bart(user_input, max_length=150 if summary_type == "Short" else 250, | |
min_length=40, do_sample=False)[0]['summary_text'] | |
st.session_state['summary'] = summary | |
else: | |
st.warning("Please enter some text.") | |
with col2: | |
st.markdown("### Summary") | |
if 'summary' in st.session_state: | |
st.success(st.session_state['summary']) | |
st.markdown(f"1 sentence • {len(st.session_state['summary'].split())} words") | |
st.button("Paraphrase Summary") | |
st.download_button("📥 Download Summary", st.session_state['summary'], file_name="summary.txt") | |
else: | |
st.info("Your summary will appear here after clicking **Summarize**.") | |