Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
import numpy as np
|
3 |
import soundfile as sf
|
@@ -10,33 +94,34 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
10 |
pipe = pipeline(
|
11 |
"automatic-speech-recognition", model="openai/whisper-large-v2", device=device
|
12 |
)
|
13 |
-
label = pipeline("audio-classification", model="facebook/mms-lid-126", device=device)
|
14 |
processor = AutoProcessor.from_pretrained("suno/bark")
|
15 |
model = BarkModel.from_pretrained("suno/bark")
|
16 |
model = model.to(device)
|
17 |
synthesised_rate = model.generation_config.sample_rate
|
18 |
|
19 |
def translate(audio_file):
|
20 |
-
audio, sampling_rate = sf.read(audio_file)
|
21 |
outputs = pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe","language":"chinese"})
|
22 |
-
language_prediction = label({"array": audio, "sampling_rate": sampling_rate})
|
23 |
-
label_outputs = {}
|
24 |
-
for pred in language_prediction:
|
25 |
-
label_outputs[pred["label"]] = pred["score"]
|
26 |
-
return outputs["text"]
|
27 |
def synthesise(text_prompt,voice_preset="v2/zh_speaker_1"):
|
28 |
inputs = processor(text_prompt, voice_preset=voice_preset)
|
29 |
speech_output = model.generate(**inputs.to(device),pad_token_id=10000)
|
30 |
return speech_output
|
31 |
def speech_to_speech_translation(audio,voice_preset="v2/zh_speaker_1"):
|
32 |
-
translated_text, label_outputs= translate(audio)
|
|
|
33 |
synthesised_speech = synthesise(translated_text,voice_preset)
|
34 |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
35 |
-
return (synthesised_rate , synthesised_speech.T),translated_text
|
36 |
|
37 |
title = "外国话转中文话"
|
38 |
description = """
|
39 |
-
作为[Hugging Face Audio course](https://
|
40 |
|
41 |

|
42 |
"""
|
@@ -46,7 +131,10 @@ examples = [
|
|
46 |
["./de.mp3", None],
|
47 |
["./fr.mp3", None],
|
48 |
["./it.mp3", None],
|
49 |
-
|
|
|
|
|
|
|
50 |
]
|
51 |
import gradio as gr
|
52 |
|
@@ -57,7 +145,7 @@ file_transcribe = gr.Interface(
|
|
57 |
outputs=[
|
58 |
gr.Audio(label="Generated Speech", type="numpy"),
|
59 |
gr.Text(label="Transcription"),
|
60 |
-
gr.Label(label="Language prediction"),
|
61 |
],
|
62 |
title=title,
|
63 |
description=description,
|
@@ -69,7 +157,7 @@ mic_transcribe = gr.Interface(
|
|
69 |
outputs=[
|
70 |
gr.Audio(label="Generated Speech", type="numpy"),
|
71 |
gr.Text(label="Transcription"),
|
72 |
-
gr.Label(label="Language prediction"),
|
73 |
],
|
74 |
title=title,
|
75 |
description=description,
|
|
|
1 |
+
# import torch
|
2 |
+
# import numpy as np
|
3 |
+
# import soundfile as sf
|
4 |
+
# from transformers import pipeline
|
5 |
+
# from transformers import BarkModel
|
6 |
+
# from transformers import AutoProcessor
|
7 |
+
|
8 |
+
# device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
9 |
+
|
10 |
+
# pipe = pipeline(
|
11 |
+
# "automatic-speech-recognition", model="openai/whisper-large-v2", device=device
|
12 |
+
# )
|
13 |
+
# label = pipeline("audio-classification", model="facebook/mms-lid-126", device=device)
|
14 |
+
# processor = AutoProcessor.from_pretrained("suno/bark")
|
15 |
+
# model = BarkModel.from_pretrained("suno/bark")
|
16 |
+
# model = model.to(device)
|
17 |
+
# synthesised_rate = model.generation_config.sample_rate
|
18 |
+
|
19 |
+
# def translate(audio_file):
|
20 |
+
# audio, sampling_rate = sf.read(audio_file)
|
21 |
+
# outputs = pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe","language":"chinese"})
|
22 |
+
# language_prediction = label({"array": audio, "sampling_rate": sampling_rate})
|
23 |
+
# label_outputs = {}
|
24 |
+
# for pred in language_prediction:
|
25 |
+
# label_outputs[pred["label"]] = pred["score"]
|
26 |
+
# return outputs["text"],label_outputs
|
27 |
+
# def synthesise(text_prompt,voice_preset="v2/zh_speaker_1"):
|
28 |
+
# inputs = processor(text_prompt, voice_preset=voice_preset)
|
29 |
+
# speech_output = model.generate(**inputs.to(device),pad_token_id=10000)
|
30 |
+
# return speech_output
|
31 |
+
# def speech_to_speech_translation(audio,voice_preset="v2/zh_speaker_1"):
|
32 |
+
# translated_text, label_outputs= translate(audio)
|
33 |
+
# synthesised_speech = synthesise(translated_text,voice_preset)
|
34 |
+
# synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
35 |
+
# return (synthesised_rate , synthesised_speech.T),translated_text,label_outputs
|
36 |
+
|
37 |
+
# title = "外国话转中文话"
|
38 |
+
# description = """
|
39 |
+
# 作为[Hugging Face Audio course](https://huggingface.co/learn/audio-course/chapter0/introduction) 的结课大作业,本演示调用了三个自然语言处理的大模型,一个用于将外国话翻译成中文,一个用于判断说的哪个国家的话,一个用于将中文转成语音输出。演示同时支持语音上传和麦克风输入,转换速度比较慢因为租不起GPU的服务器(支出增加20倍),建议您通过已经缓存Examples体验效果。欢迎添加我的微信号:ESGGTP 与我的平行人交流。
|
40 |
+
|
41 |
+
# 
|
42 |
+
# """
|
43 |
+
|
44 |
+
# examples = [
|
45 |
+
# ["./en.mp3", None],
|
46 |
+
# ["./de.mp3", None],
|
47 |
+
# ["./fr.mp3", None],
|
48 |
+
# ["./it.mp3", None],
|
49 |
+
|
50 |
+
# ]
|
51 |
+
# import gradio as gr
|
52 |
+
|
53 |
+
# demo = gr.Blocks()
|
54 |
+
# file_transcribe = gr.Interface(
|
55 |
+
# fn=speech_to_speech_translation,
|
56 |
+
# inputs=gr.Audio(source="upload", type="filepath"),
|
57 |
+
# outputs=[
|
58 |
+
# gr.Audio(label="Generated Speech", type="numpy"),
|
59 |
+
# gr.Text(label="Transcription"),
|
60 |
+
# gr.Label(label="Language prediction"),
|
61 |
+
# ],
|
62 |
+
# title=title,
|
63 |
+
# description=description,
|
64 |
+
# examples=examples,
|
65 |
+
# )
|
66 |
+
# mic_transcribe = gr.Interface(
|
67 |
+
# fn=speech_to_speech_translation,
|
68 |
+
# inputs=gr.Audio(source="microphone", type="filepath"),
|
69 |
+
# outputs=[
|
70 |
+
# gr.Audio(label="Generated Speech", type="numpy"),
|
71 |
+
# gr.Text(label="Transcription"),
|
72 |
+
# gr.Label(label="Language prediction"),
|
73 |
+
# ],
|
74 |
+
# title=title,
|
75 |
+
# description=description,
|
76 |
+
# )
|
77 |
+
# with demo:
|
78 |
+
# gr.TabbedInterface(
|
79 |
+
# [file_transcribe, mic_transcribe],
|
80 |
+
# ["Transcribe Audio File", "Transcribe Microphone"],
|
81 |
+
# )
|
82 |
+
|
83 |
+
# demo.launch(share=True)
|
84 |
+
###########################################################################################################################
|
85 |
import torch
|
86 |
import numpy as np
|
87 |
import soundfile as sf
|
|
|
94 |
pipe = pipeline(
|
95 |
"automatic-speech-recognition", model="openai/whisper-large-v2", device=device
|
96 |
)
|
97 |
+
#label = pipeline("audio-classification", model="facebook/mms-lid-126", device=device)
|
98 |
processor = AutoProcessor.from_pretrained("suno/bark")
|
99 |
model = BarkModel.from_pretrained("suno/bark")
|
100 |
model = model.to(device)
|
101 |
synthesised_rate = model.generation_config.sample_rate
|
102 |
|
103 |
def translate(audio_file):
|
104 |
+
# audio, sampling_rate = sf.read(audio_file)
|
105 |
outputs = pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe","language":"chinese"})
|
106 |
+
# language_prediction = label({"array": audio, "sampling_rate": sampling_rate})
|
107 |
+
# label_outputs = {}
|
108 |
+
# for pred in language_prediction:
|
109 |
+
# label_outputs[pred["label"]] = pred["score"]
|
110 |
+
return outputs["text"]#,label_outputs
|
111 |
def synthesise(text_prompt,voice_preset="v2/zh_speaker_1"):
|
112 |
inputs = processor(text_prompt, voice_preset=voice_preset)
|
113 |
speech_output = model.generate(**inputs.to(device),pad_token_id=10000)
|
114 |
return speech_output
|
115 |
def speech_to_speech_translation(audio,voice_preset="v2/zh_speaker_1"):
|
116 |
+
#translated_text, label_outputs= translate(audio)
|
117 |
+
translated_text = translate(audio)
|
118 |
synthesised_speech = synthesise(translated_text,voice_preset)
|
119 |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
120 |
+
return (synthesised_rate , synthesised_speech.T),translated_text#,label_outputs
|
121 |
|
122 |
title = "外国话转中文话"
|
123 |
description = """
|
124 |
+
作为[Hugging Face Audio course](https://github.com/danfouer/HFAudioCourse) 的结课大作业,本演示调用了两个自然语言处理的大模型,一个用于将外国话翻译成中文,一个用于将中文转成语音输出。演示同时支持语音上传和麦克风输入,转换速度比较慢因为租不起GPU的服务器(支出增加20倍),建议您通过已经缓存Examples体验效果。欢迎添加我的微信号:ESGGTP 与我的平行人交流。
|
125 |
|
126 |

|
127 |
"""
|
|
|
131 |
["./de.mp3", None],
|
132 |
["./fr.mp3", None],
|
133 |
["./it.mp3", None],
|
134 |
+
["./nl.mp3", None],
|
135 |
+
["./fi.mp3", None],
|
136 |
+
["./cs.mp3", None],
|
137 |
+
["./pl.mp3", None],
|
138 |
]
|
139 |
import gradio as gr
|
140 |
|
|
|
145 |
outputs=[
|
146 |
gr.Audio(label="Generated Speech", type="numpy"),
|
147 |
gr.Text(label="Transcription"),
|
148 |
+
# gr.Label(label="Language prediction"),
|
149 |
],
|
150 |
title=title,
|
151 |
description=description,
|
|
|
157 |
outputs=[
|
158 |
gr.Audio(label="Generated Speech", type="numpy"),
|
159 |
gr.Text(label="Transcription"),
|
160 |
+
# gr.Label(label="Language prediction"),
|
161 |
],
|
162 |
title=title,
|
163 |
description=description,
|