|
|
|
|
|
|
|
import os
|
|
import streamlit as st
|
|
import numpy as np
|
|
import fitz
|
|
from ultralytics import YOLO
|
|
from sklearn.cluster import KMeans
|
|
from sklearn.metrics.pairwise import cosine_similarity
|
|
from langchain_core.output_parsers import StrOutputParser
|
|
from langchain_community.document_loaders import PyMuPDFLoader
|
|
from langchain_openai import OpenAIEmbeddings
|
|
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
|
from langchain_core.prompts import ChatPromptTemplate
|
|
from sklearn.decomposition import PCA
|
|
from langchain_openai import ChatOpenAI
|
|
import string
|
|
import re
|
|
from termcolor import colored
|
|
|
|
|
|
model = YOLO("runs\\detect\\train7\\weights\\best.pt")
|
|
openai_api_key = os.environ.get("openai_api_key")
|
|
|
|
|
|
figure_class_index = 4
|
|
table_class_index = 3
|
|
|
|
|
|
global_embeddings = None
|
|
global_split_contents = None
|
|
|
|
def clean_text(text):
|
|
text = re.sub(r'\s+', ' ', text).strip()
|
|
return text
|
|
|
|
def remove_references(text):
|
|
reference_patterns = [
|
|
r'\bReferences\b', r'\breferences\b', r'\bBibliography\b', r'\bCitations\b',
|
|
r'\bWorks Cited\b', r'\bReference\b', r'\breference\b'
|
|
]
|
|
lines = text.split('\n')
|
|
for i, line in enumerate(lines):
|
|
if any(re.search(pattern, line, re.IGNORECASE) for pattern in reference_patterns):
|
|
return '\n'.join(lines[:i])
|
|
return text
|
|
|
|
def save_uploaded_file(uploaded_file):
|
|
with open(uploaded_file.name, 'wb') as f:
|
|
f.write(uploaded_file.getbuffer())
|
|
return uploaded_file.name
|
|
|
|
def summarize_pdf(pdf_file_path, num_clusters=10):
|
|
embeddings_model = OpenAIEmbeddings(model="text-embedding-3-small", api_key=openai_api_key)
|
|
llm = ChatOpenAI(model="gpt-3.5-turbo", api_key=openai_api_key, temperature=0.3)
|
|
prompt = ChatPromptTemplate.from_template(
|
|
"""Could you please provide a concise and comprehensive summary of the given Contexts?
|
|
The summary should capture the main points and key details of the text while conveying the author's intended meaning accurately.
|
|
Please ensure that the summary is well-organized and easy to read, with clear headings and subheadings to guide the reader through each section.
|
|
The length of the summary should be appropriate to capture the main points and key details of the text, without including unnecessary information or becoming overly long.
|
|
example of summary:
|
|
## Summary:
|
|
## Key points:
|
|
Contexts: {topic}"""
|
|
)
|
|
output_parser = StrOutputParser()
|
|
chain = prompt | llm | output_parser
|
|
|
|
loader = PyMuPDFLoader(pdf_file_path)
|
|
docs = loader.load()
|
|
full_text = "\n".join(doc.page_content for doc in docs)
|
|
cleaned_full_text = remove_references(full_text)
|
|
cleaned_full_text = clean_text(cleaned_full_text)
|
|
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0,separators=["\n\n", "\n",".", " "])
|
|
split_contents = text_splitter.split_text(cleaned_full_text)
|
|
embeddings = embeddings_model.embed_documents(split_contents)
|
|
|
|
X = np.array(embeddings)
|
|
kmeans = KMeans(n_clusters=num_clusters, init='k-means++', random_state=0).fit(embeddings)
|
|
cluster_centers = kmeans.cluster_centers_
|
|
|
|
closest_point_indices = []
|
|
for center in cluster_centers:
|
|
distances = np.linalg.norm(embeddings - center, axis=1)
|
|
closest_point_indices.append(np.argmin(distances))
|
|
|
|
extracted_contents = [split_contents[idx] for idx in closest_point_indices]
|
|
results = chain.invoke({"topic": ' '.join(extracted_contents)})
|
|
|
|
summary_sentences = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s', results)
|
|
summary_embeddings = embeddings_model.embed_documents(summary_sentences)
|
|
extracted_embeddings = embeddings_model.embed_documents(extracted_contents)
|
|
similarity_matrix = cosine_similarity(summary_embeddings, extracted_embeddings)
|
|
|
|
cited_results = results
|
|
relevant_sources = []
|
|
source_mapping = {}
|
|
sentence_to_source = {}
|
|
similarity_threshold = 0.6
|
|
|
|
for i, sentence in enumerate(summary_sentences):
|
|
if sentence in sentence_to_source:
|
|
continue
|
|
max_similarity = max(similarity_matrix[i])
|
|
if max_similarity >= similarity_threshold:
|
|
most_similar_idx = np.argmax(similarity_matrix[i])
|
|
if most_similar_idx not in source_mapping:
|
|
source_mapping[most_similar_idx] = len(relevant_sources) + 1
|
|
relevant_sources.append((most_similar_idx, extracted_contents[most_similar_idx]))
|
|
citation_idx = source_mapping[most_similar_idx]
|
|
citation = f"([Source {citation_idx}](#source-{citation_idx}))"
|
|
cited_sentence = re.sub(r'([.!?])$', f" {citation}\\1", sentence)
|
|
sentence_to_source[sentence] = citation_idx
|
|
cited_results = cited_results.replace(sentence, cited_sentence)
|
|
|
|
sources_list = "\n\n## Sources:\n"
|
|
for idx, (original_idx, content) in enumerate(relevant_sources):
|
|
sources_list += f"""
|
|
<details style="margin: 10px 0; padding: 10px; border: 1px solid #ccc; border-radius: 5px; background-color: #f9f9f9;">
|
|
<summary style="font-weight: bold; cursor: pointer;">Source {idx + 1}</summary>
|
|
<pre style="white-space: pre-wrap; word-wrap: break-word; margin-top: 10px;">{content}</pre>
|
|
</details>
|
|
"""
|
|
cited_results += sources_list
|
|
return cited_results
|
|
|
|
def qa_pdf(pdf_file_path, query, num_clusters=5, similarity_threshold=0.6):
|
|
global global_embeddings, global_split_contents
|
|
|
|
|
|
embeddings_model = OpenAIEmbeddings(model="text-embedding-3-small", api_key=openai_api_key)
|
|
llm = ChatOpenAI(model="gpt-3.5-turbo", api_key=openai_api_key, temperature=0.3)
|
|
prompt = ChatPromptTemplate.from_template(
|
|
"""Please provide a detailed and accurate answer to the given question based on the provided contexts.
|
|
Ensure that the answer is comprehensive and directly addresses the query.
|
|
If necessary, include relevant examples or details from the text.
|
|
Question: {question}
|
|
Contexts: {contexts}"""
|
|
)
|
|
output_parser = StrOutputParser()
|
|
chain = prompt | llm | output_parser
|
|
|
|
|
|
if global_embeddings is None or global_split_contents is None:
|
|
loader = PyMuPDFLoader(pdf_file_path)
|
|
docs = loader.load()
|
|
full_text = "\n".join(doc.page_content for doc in docs)
|
|
cleaned_full_text = remove_references(full_text)
|
|
cleaned_full_text = clean_text(cleaned_full_text)
|
|
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=800, chunk_overlap=0, separators=["\n\n", "\n", ".", " "])
|
|
global_split_contents = text_splitter.split_text(cleaned_full_text)
|
|
global_embeddings = embeddings_model.embed_documents(global_split_contents)
|
|
|
|
|
|
query_embedding = embeddings_model.embed_query(query)
|
|
similarity_scores = cosine_similarity([query_embedding], global_embeddings)[0]
|
|
top_indices = np.argsort(similarity_scores)[-num_clusters:]
|
|
relevant_contents = [global_split_contents[i] for i in top_indices]
|
|
|
|
|
|
results = chain.invoke({"question": query, "contexts": ' '.join(relevant_contents)})
|
|
|
|
|
|
answer_sentences = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s', results)
|
|
answer_embeddings = embeddings_model.embed_documents(answer_sentences)
|
|
relevant_embeddings = embeddings_model.embed_documents(relevant_contents)
|
|
similarity_matrix = cosine_similarity(answer_embeddings, relevant_embeddings)
|
|
|
|
|
|
cited_results = results
|
|
relevant_sources = []
|
|
source_mapping = {}
|
|
sentence_to_source = {}
|
|
|
|
for i, sentence in enumerate(answer_sentences):
|
|
if sentence in sentence_to_source:
|
|
continue
|
|
max_similarity = max(similarity_matrix[i])
|
|
if max_similarity >= similarity_threshold:
|
|
most_similar_idx = np.argmax(similarity_matrix[i])
|
|
if most_similar_idx not in source_mapping:
|
|
source_mapping[most_similar_idx] = len(relevant_sources) + 1
|
|
relevant_sources.append((most_similar_idx, relevant_contents[most_similar_idx]))
|
|
citation_idx = source_mapping[most_similar_idx]
|
|
citation = f"<strong style='color:blue;'>[Source {citation_idx}]</strong>"
|
|
cited_sentence = re.sub(r'([.!?])$', f" {citation}\\1", sentence)
|
|
sentence_to_source[sentence] = citation_idx
|
|
cited_results = cited_results.replace(sentence, cited_sentence)
|
|
|
|
|
|
sources_list = "\n\n## Sources:\n"
|
|
for idx, (original_idx, content) in enumerate(relevant_sources):
|
|
sources_list += f"""
|
|
<details style="margin: 10px 0; padding: 10px; border: 1px solid #ccc; border-radius: 5px; background-color: #f9f9f9;">
|
|
<summary style="font-weight: bold; cursor: pointer;">Source {idx + 1}</summary>
|
|
<pre style="white-space: pre-wrap; word-wrap: break-word; margin-top: 10px;">{content}</pre>
|
|
</details>
|
|
"""
|
|
cited_results += sources_list
|
|
return cited_results
|
|
|
|
|
|
def infer_image_and_get_boxes(image, confidence_threshold=0.6):
|
|
results = model.predict(image)
|
|
boxes = [
|
|
(int(box.xyxy[0][0]), int(box.xyxy[0][1]), int(box.xyxy[0][2]), int(box.xyxy[0][3]), int(box.cls[0]))
|
|
for result in results for box in result.boxes
|
|
if int(box.cls[0]) in {figure_class_index, table_class_index} and box.conf[0] > confidence_threshold
|
|
]
|
|
return boxes
|
|
|
|
def crop_images_from_boxes(image, boxes, scale_factor):
|
|
figures = []
|
|
tables = []
|
|
for (x1, y1, x2, y2, cls) in boxes:
|
|
cropped_img = image[int(y1 * scale_factor):int(y2 * scale_factor), int(x1 * scale_factor):int(x2 * scale_factor)]
|
|
if cls == figure_class_index:
|
|
figures.append(cropped_img)
|
|
elif cls == table_class_index:
|
|
tables.append(cropped_img)
|
|
return figures, tables
|
|
|
|
|
|
def process_pdf(pdf_file_path):
|
|
doc = fitz.open(pdf_file_path)
|
|
all_figures = []
|
|
all_tables = []
|
|
low_dpi = 50
|
|
high_dpi = 300
|
|
scale_factor = high_dpi / low_dpi
|
|
low_res_pixmaps = [page.get_pixmap(dpi=low_dpi) for page in doc]
|
|
|
|
for page_num, low_res_pix in enumerate(low_res_pixmaps):
|
|
low_res_img = np.frombuffer(low_res_pix.samples, dtype=np.uint8).reshape(low_res_pix.height, low_res_pix.width, 3)
|
|
boxes = infer_image_and_get_boxes(low_res_img)
|
|
|
|
if boxes:
|
|
high_res_pix = doc[page_num].get_pixmap(dpi=high_dpi)
|
|
high_res_img = np.frombuffer(high_res_pix.samples, dtype=np.uint8).reshape(high_res_pix.height, high_res_pix.width, 3)
|
|
figures, tables = crop_images_from_boxes(high_res_img, boxes, scale_factor)
|
|
all_figures.extend(figures)
|
|
all_tables.extend(tables)
|
|
|
|
return all_figures, all_tables
|
|
|
|
|
|
|
|
|
|
|
|
st.set_page_config(page_title="PDF Reading Assistant", page_icon="π", layout="wide")
|
|
|
|
|
|
st.markdown("""
|
|
<style>
|
|
/* Main background and padding */
|
|
.main {
|
|
background-color: #f8f9fa;
|
|
padding: 2rem;
|
|
font-family: 'Arial', sans-serif;
|
|
}
|
|
|
|
/* Section headers */
|
|
.section-header {
|
|
font-size: 2rem;
|
|
font-weight: bold;
|
|
color: #343a40;
|
|
margin-top: 2rem;
|
|
margin-bottom: 1rem;
|
|
text-align: center;
|
|
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
|
}
|
|
|
|
/* Containers */
|
|
.uploaded-file-container, .chat-container, .summary-container, .extract-container {
|
|
padding: 2rem;
|
|
background-color: #ffffff;
|
|
border-radius: 10px;
|
|
margin-bottom: 2rem;
|
|
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1);
|
|
}
|
|
|
|
/* Buttons */
|
|
.stButton>button {
|
|
background-color: #007bff;
|
|
color: white;
|
|
padding: 0.6rem 1.2rem;
|
|
border-radius: 5px;
|
|
border: none;
|
|
cursor: pointer;
|
|
font-size: 1rem;
|
|
transition: background-color 0.3s ease, transform 0.3s ease;
|
|
}
|
|
.stButton>button:hover {
|
|
background-color: #0056b3;
|
|
transform: translateY(-2px);
|
|
}
|
|
|
|
/* Chat messages */
|
|
.chat-message {
|
|
padding: 1rem;
|
|
border-radius: 10px;
|
|
margin-bottom: 1rem;
|
|
font-size: 1rem;
|
|
transition: all 0.3s ease;
|
|
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.1);
|
|
}
|
|
.chat-message.user {
|
|
background-color: #e6f7ff;
|
|
border-left: 5px solid #007bff;
|
|
text-align: left;
|
|
}
|
|
.chat-message.bot {
|
|
background-color: #fff0f1;
|
|
border-left: 5px solid #dc3545;
|
|
text-align: left;
|
|
}
|
|
|
|
/* Input area */
|
|
.input-container {
|
|
display: flex;
|
|
align-items: center;
|
|
gap: 10px;
|
|
margin-top: 1rem;
|
|
}
|
|
.input-container textarea {
|
|
border: 2px solid #ccc;
|
|
border-radius: 10px;
|
|
padding: 10px;
|
|
width: 100%;
|
|
background-color: #fff;
|
|
transition: border-color 0.3s ease;
|
|
margin: 0;
|
|
font-size: 1rem;
|
|
}
|
|
.input-container textarea:focus {
|
|
border-color: #007bff;
|
|
outline: none;
|
|
}
|
|
.input-container button {
|
|
background-color: #007bff;
|
|
color: white;
|
|
padding: 0.6rem 1.2rem;
|
|
border-radius: 5px;
|
|
border: none;
|
|
cursor: pointer;
|
|
font-size: 1rem;
|
|
transition: background-color 0.3s ease, transform 0.3s ease;
|
|
}
|
|
.input-container button:hover {
|
|
background-color: #0056b3;
|
|
transform: translateY(-2px);
|
|
}
|
|
|
|
/* Expander */
|
|
.st-expander {
|
|
border: none;
|
|
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1);
|
|
margin-bottom: 2rem;
|
|
}
|
|
|
|
/* Markdown elements */
|
|
.stMarkdown {
|
|
font-size: 1rem;
|
|
color: #343a40;
|
|
line-height: 1.6;
|
|
}
|
|
|
|
/* Titles and subtitles */
|
|
.stTitle {
|
|
color: #343a40;
|
|
text-align: center;
|
|
margin-bottom: 1rem;
|
|
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
|
}
|
|
.stSubtitle {
|
|
color: #6c757d;
|
|
text-align: center;
|
|
margin-bottom: 1rem;
|
|
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
|
}
|
|
</style>
|
|
""", unsafe_allow_html=True)
|
|
|
|
|
|
st.title("π PDF Reading Assistant")
|
|
st.markdown("### Extract tables, figures, summaries, and answers from your PDF files easily.")
|
|
|
|
uploaded_file = st.file_uploader("Upload a PDF", type="pdf")
|
|
if uploaded_file:
|
|
file_path = save_uploaded_file(uploaded_file)
|
|
with st.container():
|
|
st.markdown("<div class='section-header'>Extract Tables and Figures</div>", unsafe_allow_html=True)
|
|
with st.expander("Click to Extract Tables and Figures", expanded=True):
|
|
with st.container():
|
|
extract_button = st.button("Extract")
|
|
if extract_button:
|
|
figures, tables = process_pdf(file_path)
|
|
col1, col2 = st.columns(2)
|
|
with col1:
|
|
st.write("### Figures")
|
|
if figures:
|
|
for figure in figures:
|
|
st.image(figure, use_column_width=True)
|
|
else:
|
|
st.write("No figures found.")
|
|
with col2:
|
|
st.write("### Tables")
|
|
if tables:
|
|
for table in tables:
|
|
st.image(table, use_column_width=True)
|
|
else:
|
|
st.write("No tables found.")
|
|
|
|
with st.container():
|
|
st.markdown("<div class='section-header'>Get Summary</div>", unsafe_allow_html=True)
|
|
with st.expander("Click to Generate Summary", expanded=True):
|
|
with st.container():
|
|
summary_button = st.button("Generate Summary")
|
|
if summary_button:
|
|
summary = summarize_pdf(file_path)
|
|
st.markdown(summary, unsafe_allow_html=True)
|
|
|
|
with st.container():
|
|
st.markdown("<div class='section-header'>Chat with your PDF</div>", unsafe_allow_html=True)
|
|
st.write("### Chat with your PDF")
|
|
if 'chat_history' not in st.session_state:
|
|
st.session_state['chat_history'] = []
|
|
|
|
for chat in st.session_state['chat_history']:
|
|
chat_user_class = "user" if chat["user"] else ""
|
|
chat_bot_class = "bot" if chat["bot"] else ""
|
|
st.markdown(f"<div class='chat-message {chat_user_class}'>{chat['user']}</div>", unsafe_allow_html=True)
|
|
st.markdown(f"<div class='chat-message {chat_bot_class}'>{chat['bot']}</div>", unsafe_allow_html=True)
|
|
|
|
with st.form(key="chat_form", clear_on_submit=True):
|
|
user_input = st.text_area("Ask a question about the PDF:", key="user_input")
|
|
submit_button = st.form_submit_button(label="Send")
|
|
|
|
if submit_button and user_input:
|
|
st.session_state['chat_history'].append({"user": user_input, "bot": None})
|
|
answer = qa_pdf(file_path, user_input)
|
|
st.session_state['chat_history'][-1]["bot"] = answer
|
|
st.experimental_rerun() |