File size: 7,803 Bytes
8bbef17 beca6a7 8705301 8bbef17 8705301 8bbef17 8705301 8bbef17 4522002 89f2ae3 533d3ec 89f2ae3 6e1a1ed 89f2ae3 4522002 8bbef17 89f2ae3 8bbef17 8705301 8bbef17 8705301 8bbef17 89f2ae3 8bbef17 89f2ae3 8bbef17 89f2ae3 8bbef17 89f2ae3 8bbef17 89f2ae3 8bbef17 89f2ae3 8bbef17 89f2ae3 8bbef17 89f2ae3 8bbef17 89f2ae3 8bbef17 89f2ae3 8bbef17 89f2ae3 7263d31 89f2ae3 8705301 89f2ae3 8705301 89f2ae3 8705301 89f2ae3 8705301 89f2ae3 8705301 89f2ae3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
import os
os.system("python -m spacy download en_core_web_sm")
import io
import base64
import streamlit as st
import numpy as np
import fitz # PyMuPDF
import tempfile
from ultralytics import YOLO
from sklearn.cluster import KMeans
from sklearn.metrics.pairwise import cosine_similarity
from langchain_core.output_parsers import StrOutputParser
from langchain_community.document_loaders import PyMuPDFLoader
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
import re
from PIL import Image
openai_api_key = os.environ.get("openai_api_key")
# Cached resources
@st.cache_resource
def load_models():
return {
"yolo": YOLO("best.pt"),
"embeddings": OpenAIEmbeddings(model="text-embedding-3-small",api_key=openai_api_key),
"llm": ChatOpenAI(model="gpt-4-turbo", temperature=0.3,api_key=openai_api_key)
}
models = load_models()
# Constants
FIGURE_CLASS_INDEX = 4
TABLE_CLASS_INDEX = 3
CHUNK_SIZE = 1000
CHUNK_OVERLAP = 200
NUM_CLUSTERS = 8
# Utility functions
def clean_text(text):
return re.sub(r'\s+', ' ', text).strip()
def remove_references(text):
reference_patterns = [
r'\bReferences\b', r'\breferences\b', r'\bBibliography\b',
r'\bCitations\b', r'\bWorks Cited\b'
]
return re.sub('|'.join(reference_patterns), '', text, flags=re.IGNORECASE)
@st.cache_data
def process_pdf(file_path):
"""Process PDF once and cache results"""
loader = PyMuPDFLoader(file_path)
docs = loader.load()
full_text = "\n".join(doc.page_content for doc in docs)
cleaned_text = clean_text(remove_references(full_text))
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=CHUNK_SIZE,
chunk_overlap=CHUNK_OVERLAP,
separators=["\n\n", "\n", ". ", "! ", "? ", " "]
)
split_contents = text_splitter.split_text(cleaned_text)
return {
"text": cleaned_text,
"chunks": split_contents,
"embeddings": models["embeddings"].embed_documents(split_contents)
}
@st.cache_data
def extract_visuals(file_path):
"""Extract figures and tables with caching"""
doc = fitz.open(file_path)
all_figures = []
all_tables = []
for page in doc:
low_res_pix = page.get_pixmap(dpi=50)
low_res_img = np.frombuffer(low_res_pix.samples, dtype=np.uint8).reshape(low_res_pix.height, low_res_pix.width, 3)
results = models["yolo"].predict(low_res_img)
boxes = [
(int(box.xyxy[0][0]), int(box.xyxy[0][1]),
int(box.xyxy[0][2]), int(box.xyxy[0][3]), int(box.cls[0]))
for result in results for box in result.boxes
if box.conf[0] > 0.8 and int(box.cls[0]) in {FIGURE_CLASS_INDEX, TABLE_CLASS_INDEX}
]
if boxes:
high_res_pix = page.get_pixmap(dpi=300)
high_res_img = np.frombuffer(high_res_pix.samples, dtype=np.uint8).reshape(high_res_pix.height, high_res_pix.width, 3)
for x1, y1, x2, y2, cls in boxes:
img = high_res_img[int(y1*6):int(y2*6), int(x1*6):int(x2*6)]
if cls == FIGURE_CLASS_INDEX:
all_figures.append(img)
else:
all_tables.append(img)
return {"figures": all_figures, "tables": all_tables}
def generate_summary(chunks, embeddings):
"""Generate summary using clustered chunks"""
kmeans = KMeans(n_clusters=NUM_CLUSTERS, init='k-means++').fit(embeddings)
cluster_indices = [np.argmin(np.linalg.norm(embeddings - center, axis=1))
for center in kmeans.cluster_centers_]
selected_chunks = [chunks[i] for i in cluster_indices]
prompt = ChatPromptTemplate.from_template(
"""Create a structured summary with key points from these context sections:
{contexts}
Format:
## Summary
[concise overview]
## Key Points
- [main point 1]
- [main point 2]
..."""
)
chain = prompt | models["llm"] | StrOutputParser()
return chain.invoke({"contexts": '\n\n'.join(selected_chunks)})
def answer_question(question, chunks, embeddings):
"""Answer question using semantic search"""
query_embedding = models["embeddings"].embed_query(question)
similarities = cosine_similarity([query_embedding], embeddings)[0]
top_indices = np.argsort(similarities)[-5:][::-1]
context = '\n'.join([chunks[i] for i in top_indices if similarities[i] > 0.6])
prompt = ChatPromptTemplate.from_template(
"""Answer this question: {question}
Using only this context: {context}
- Be precise and include relevant details
- Cite sources as [Source 1], [Source 2], etc."""
)
chain = prompt | models["llm"] | StrOutputParser()
return chain.invoke({"question": question, "context": context})
# Streamlit UI
#st.set_page_config(page_title="PDF Assistant", layout="wide")
st.title("π Smart PDF Assistant")
if "chat" not in st.session_state:
st.session_state.chat = []
if "processed_data" not in st.session_state:
st.session_state.processed_data = None
# File upload section
with st.sidebar:
uploaded_file = st.file_uploader("Upload PDF", type="pdf")
if uploaded_file:
with tempfile.NamedTemporaryFile(delete=False) as tmp:
tmp.write(uploaded_file.getbuffer())
st.session_state.processed_data = process_pdf(tmp.name)
visuals = extract_visuals(tmp.name)
# Chat interface
col1, col2 = st.columns([3, 1])
with col1:
st.subheader("Document Interaction")
for msg in st.session_state.chat:
with st.chat_message(msg["role"]):
if "image" in msg:
st.image(msg["image"], caption=msg.get("caption"))
else:
st.markdown(msg["content"])
if prompt := st.chat_input("Ask about the document..."):
st.session_state.chat.append({"role": "user", "content": prompt})
with st.spinner("Analyzing..."):
response = answer_question(
prompt,
st.session_state.processed_data["chunks"],
st.session_state.processed_data["embeddings"]
)
st.session_state.chat.append({"role": "assistant", "content": response})
st.rerun()
with col2:
st.subheader("Document Insights")
if st.button("Generate Summary"):
with st.spinner("Summarizing..."):
summary = generate_summary(
st.session_state.processed_data["chunks"],
st.session_state.processed_data["embeddings"]
)
st.session_state.chat.append({
"role": "assistant",
"content": f"## Document Summary\n{summary}"
})
st.rerun()
if visuals["figures"]:
with st.expander(f"π· Figures ({len(visuals['figures'])})"):
for idx, fig in enumerate(visuals["figures"], 1):
st.image(fig, caption=f"Figure {idx}")
if visuals["tables"]:
with st.expander(f"π Tables ({len(visuals['tables'])})"):
for idx, tbl in enumerate(visuals["tables"], 1):
st.image(tbl, caption=f"Table {idx}")
# Custom styling
st.markdown("""
<style>
[data-testid=stSidebar] {
background: #fafafa;
border-right: 1px solid #eee;
}
.stChatMessage {
padding: 1rem;
margin: 0.5rem 0;
border-radius: 10px;
box-shadow: 0 2px 5px rgba(0,0,0,0.1);
}
[data-testid=stVerticalBlock] > div:has(>.stChatMessage) {
gap: 0.5rem;
}
</style>
""", unsafe_allow_html=True) |