OneKE / src /webui.py
ShawnRu's picture
Update src/webui.py
48d0863 verified
raw
history blame
21.4 kB
"""
....../OneKE$ python src/webui.py
"""
import gradio as gr
import json
import random
import re
from models import *
from pipeline import Pipeline
examples = [
{
"task": "NER",
"mode": "quick",
"use_file": False,
"text": "Finally, every other year , ELRA organizes a major conference LREC , the International Language Resources and Evaluation Conference .",
"instruction": "",
"constraint": """["algorithm", "conference", "else", "product", "task", "field", "metrics", "organization", "researcher", "program language", "country", "location", "person", "university"]""",
"file_path": None,
"update_case": False,
"truth": "",
},
{
"task": "RE",
"mode": "quick",
"use_file": False,
"text": "The aid group Doctors Without Borders said that since Saturday , more than 275 wounded people had been admitted and treated at Donka Hospital in the capital of Guinea , Conakry .",
"instruction": "",
"constraint": """["nationality", "country capital", "place of death", "children", "location contains", "place of birth", "place lived", "administrative division of country", "country of administrative divisions", "company", "neighborhood of", "company founders"]""",
"file_path": None,
"update_case": True,
"truth": """{"relation_list": [{"head": "Guinea", "tail": "Conakry", "relation": "country capital"}]}""",
},
{
"task": "EE",
"mode": "standard",
"use_file": False,
"text": "The file suggested to the user contains no software related to video streaming and simply carries the malicious payload that later compromises victim \u2019s account and sends out the deceptive messages to all victim \u2019s contacts .",
"instruction": "",
"constraint": """{"phishing": ["damage amount", "attack pattern", "tool", "victim", "place", "attacker", "purpose", "trusted entity", "time"], "data breach": ["damage amount", "attack pattern", "number of data", "number of victim", "tool", "compromised data", "victim", "place", "attacker", "purpose", "time"], "ransom": ["damage amount", "attack pattern", "payment method", "tool", "victim", "place", "attacker", "price", "time"], "discover vulnerability": ["vulnerable system", "vulnerability", "vulnerable system owner", "vulnerable system version", "supported platform", "common vulnerabilities and exposures", "capabilities", "time", "discoverer"], "patch vulnerability": ["vulnerable system", "vulnerability", "issues addressed", "vulnerable system version", "releaser", "supported platform", "common vulnerabilities and exposures", "patch number", "time", "patch"]}""",
"file_path": None,
"update_case": False,
"truth": "",
},
{
"task": "Triple",
"mode": "quick",
"use_file": True,
"file_path": "data/input_files/Artificial_Intelligence_Wikipedia.txt",
"instruction": "",
"constraint": """[["Person", "Place", "Event", "property"], ["Interpersonal", "Located", "Ownership", "Action"]]""",
"text": "",
"update_case": False,
"truth": "",
},
{
"task": "Base",
"mode": "quick",
"use_file": True,
"file_path": "data/input_files/Harry_Potter_Chapter1.pdf",
"instruction": "Extract main characters and the background setting from this chapter.",
"constraint": "",
"text": "",
"update_case": False,
"truth": "",
},
{
"task": "Base",
"mode": "quick",
"use_file": True,
"file_path": "data/input_files/Tulsi_Gabbard_News.html",
"instruction": "Extract key information from the given text.",
"constraint": "",
"text": "",
"update_case": False,
"truth": "",
},
{
"task": "Base",
"mode": "quick",
"use_file": False,
"text": "John Smith, a 45-year-old male, presents with persistent headaches that have lasted for the past 10 days. The headaches are described as moderate and occur primarily in the frontal region, often accompanied by mild nausea. The patient reports no significant medical history except for seasonal allergies, for which he occasionally takes antihistamines. Physical examination reveals a heart rate of 78 beats per minute, blood pressure of 125/80 mmHg, and normal temperature. A neurological examination showed no focal deficits. A CT scan of the head was performed, which revealed no acute abnormalities, and a sinus X-ray suggested mild sinusitis. Based on the clinical presentation and imaging results, the diagnosis is sinusitis, and the patient is advised to take decongestants and rest for recovery.",
"instruction": "Please extract the key medical information from this case description.",
"constraint": "",
"file_path": None,
"update_case": False,
"truth": "",
}
]
def create_interface():
with gr.Blocks(title="OneKE Demo", theme=gr.themes.Glass(text_size="lg")) as demo:
gr.HTML("""
<div style="text-align:center;">
<p align="center">
<a>
<img src="https://raw.githubusercontent.com/zjunlp/OneKE/refs/heads/main/figs/logo.png" width="240"/>
</a>
</p>
<h1>OneKE: A Dockerized Schema-Guided LLM Agent-based Knowledge Extraction System</h1>
<p>
🌐[<a href="https://oneke.openkg.cn/" target="_blank">Home</a>]
πŸ“Ή[<a href="http://oneke.openkg.cn/demo.mp4" target="_blank">Video</a>]
πŸ“[<a href="https://arxiv.org/abs/2412.20005v2" target="_blank">Paper</a>]
πŸ’»[<a href="https://github.com/zjunlp/OneKE" target="_blank">Code</a>]
</p>
</div>
""")
example_button_gr = gr.Button("🎲 Quick Start with an Example 🎲")
with gr.Row():
with gr.Column():
model_gr = gr.Dropdown(
label="πŸͺ„ Select your Model",
choices=["deepseek-chat", "deepseek-reasoner",
"gpt-3.5-turbo", "gpt-4o-mini", "gpt-4o",
],
value="deepseek-chat",
)
# model_gr = gr.Textbox(
# label="πŸͺ„ Enter your Model",
# placeholder="Supports online-models like gpt-4o-mini, deepseek-chat, etc., HuggingFace Demo is not supported for local models.",
# value="deepseek-chat",
# )
api_key_gr = gr.Textbox(
label="πŸ”‘ Enter your API-Key",
placeholder="We currently support the API-Key from ChatGPT or DeepSeek.",
value="sk-xxxxx"
)
base_url_gr = gr.Textbox(
label="πŸ”— Enter your Base-URL",
placeholder="If using the default Base-URL, this field should be left empty.",
value="Default",
)
with gr.Column():
task_gr = gr.Dropdown(
label="🎯 Select your Task",
choices=["Base", "NER", "RE", "EE", "Triple"],
value="Base",
)
mode_gr = gr.Dropdown(
label="🧭 Select your Mode",
choices=["quick", "standard", "customized"],
value="quick",
)
schema_agent_gr = gr.Dropdown(choices=["Not Required", "get_default_schema", "get_deduced_schema"], value="Not Required", label="πŸ€– Select your Schema-Agent", visible=False)
extraction_Agent_gr = gr.Dropdown(choices=["Not Required", "extract_information_direct", "extract_information_with_case"], value="Not Required", label="πŸ€– Select your Extraction-Agent", visible=False)
reflection_agent_gr = gr.Dropdown(choices=["Not Required", "reflect_with_case"], value="Not Required", label="πŸ€– Select your Reflection-Agent", visible=False)
use_file_gr = gr.Checkbox(label="πŸ“‚ Use File", value=True)
file_path_gr = gr.File(label="πŸ“– Upload a File", visible=True)
text_gr = gr.Textbox(label="πŸ“– Text", lines=5, placeholder="Enter your Text please.", visible=False)
instruction_gr = gr.Textbox(label="πŸ•ΉοΈ Instruction", lines=3, placeholder="You can enter any type of information you want to extract here, for example: Please help me extract all the person names.", visible=True)
constraint_gr = gr.Textbox(label="πŸ•ΉοΈ Constraint", lines=3, placeholder="You can enter any type of information you want to extract here, for example: Please help me extract all the person names.", visible=False)
update_case_gr = gr.Checkbox(label="πŸ’° Update Case", value=False)
# update_schema_gr = gr.Checkbox(label="πŸ“Ÿ Update Schema", value=False)
truth_gr = gr.Textbox(label="πŸͺ™ Truth", lines=2, placeholder="""You can enter the truth you want LLM know, for example: {"relation_list": [{"head": "Guinea", "tail": "Conakry", "relation": "country capital"}]}""", visible=False)
# selfschema_gr = gr.Textbox(label="πŸ“Ÿ Schema", lines=5, placeholder="Enter your New Schema", visible=False, interactive=True)
def get_model_category(model_name_or_path):
if model_name_or_path in ["gpt-3.5-turbo", "gpt-4o-mini", "gpt-4o", "o3-mini"]:
return ChatGPT
elif model_name_or_path in ["deepseek-chat", "deepseek-reasoner"]:
return DeepSeek
elif re.search(r'(?i)llama', model_name_or_path):
return LLaMA
elif re.search(r'(?i)qwen', model_name_or_path):
return Qwen
elif re.search(r'(?i)minicpm', model_name_or_path):
return MiniCPM
elif re.search(r'(?i)chatglm', model_name_or_path):
return ChatGLM
else:
return BaseEngine
def customized_mode(mode):
if mode == "customized":
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
else:
return gr.update(visible=False, value="Not Required"), gr.update(visible=False, value="Not Required"), gr.update(visible=False, value="Not Required")
def update_fields(task):
if task == "Base" or task == "":
return gr.update(visible=True, label="πŸ•ΉοΈ Instruction", lines=3, placeholder="You can enter any type of information you want to extract here, for example: Please help me extract all the person names."), gr.update(visible=False)
elif task == "NER":
# TODO
return gr.update(visible=False), gr.update(visible=True, label="πŸ•ΉοΈ Constraint", lines=3, placeholder="You can enter any type of information you want to extract here, for example: Please help me extract all the person names.")
elif task == "RE":
return gr.update(visible=False), gr.update(visible=True, label="πŸ•ΉοΈ Constraint", lines=3, placeholder="You can enter any type of information you want to extract here, for example: Please help me extract all the person names.")
elif task == "EE":
return gr.update(visible=False), gr.update(visible=True, label="πŸ•ΉοΈ Constraint", lines=3, placeholder="You can enter any type of information you want to extract here, for example: Please help me extract all the person names.")
elif task == "Triple":
return gr.update(visible=False), gr.update(visible=True, label="πŸ•ΉοΈ Constraint", lines=3, placeholder="You can enter any type of information you want to extract here, for example: Please help me extract all the person names.")
def update_input_fields(use_file):
if use_file:
return gr.update(visible=False), gr.update(visible=True)
else:
return gr.update(visible=True), gr.update(visible=False)
def update_case(update_case):
if update_case:
return gr.update(visible=True)
else:
return gr.update(visible=False)
# def update_schema(update_schema):
# if update_schema:
# return gr.update(visible=True)
# else:
# return gr.update(visible=False)
idx = 0
def start_with_example():
example = examples[idx]
idx += 1
if idx >= len(examples):
idx = 0
return (
gr.update(value=example["task"]),
gr.update(value=example["mode"]),
gr.update(value=example["use_file"]),
gr.update(value=example["file_path"], visible=example["use_file"]),
gr.update(value=example["text"], visible=not example["use_file"]),
gr.update(value=example["instruction"], visible=example["task"] == "Base"),
gr.update(value=example["constraint"], visible=example["task"] in ["NER", "RE", "EE", "Triple"]),
gr.update(value=example["update_case"]),
gr.update(value=example["truth"]), # gr.update(value=example["update_schema"]), gr.update(value=example["selfschema"]),
gr.update(value="Not Required", visible=False),
gr.update(value="Not Required", visible=False),
gr.update(value="Not Required", visible=False),
)
def submit(model, api_key, base_url, task, mode, instruction, constraint, text, use_file, file_path, update_case, truth, schema_agent, extraction_Agent, reflection_agent):
try:
ModelClass = get_model_category(model)
if base_url == "Default" or base_url == "":
if api_key == "":
pipeline = Pipeline(ModelClass(model_name_or_path=model))
else:
pipeline = Pipeline(ModelClass(model_name_or_path=model, api_key=api_key))
else:
if api_key == "":
pipeline = Pipeline(ModelClass(model_name_or_path=model, base_url=base_url))
else:
pipeline = Pipeline(ModelClass(model_name_or_path=model, api_key=api_key, base_url=base_url))
if task == "Base":
instruction = instruction
constraint = ""
else:
instruction = ""
constraint = constraint
if use_file:
text = ""
file_path = file_path
else:
text = text
file_path = None
if not update_case:
truth = ""
agent3 = {}
if mode == "customized":
if schema_agent not in ["", "Not Required"]:
agent3["schema_agent"] = schema_agent
if extraction_Agent not in ["", "Not Required"]:
agent3["extraction_agent"] = extraction_Agent
if reflection_agent not in ["", "Not Required"]:
agent3["reflection_agent"] = reflection_agent
# use 'Pipeline'
_, _, ger_frontend_schema, ger_frontend_res = pipeline.get_extract_result(
task=task,
text=text,
use_file=use_file,
file_path=file_path,
instruction=instruction,
constraint=constraint,
mode=mode,
three_agents=agent3,
isgui=True,
update_case=update_case,
truth=truth,
output_schema="",
show_trajectory=False,
)
ger_frontend_schema = str(ger_frontend_schema)
ger_frontend_res = json.dumps(ger_frontend_res, ensure_ascii=False, indent=4) if isinstance(ger_frontend_res, dict) else str(ger_frontend_res)
return ger_frontend_schema, ger_frontend_res, gr.update(value="", visible=False)
except Exception as e:
error_message = f"⚠️ Error:\n {str(e)}"
return "", "", gr.update(value=error_message, visible=True)
def clear_all():
return (
gr.update(value="Not Required", visible=False), # sechema_agent
gr.update(value="Not Required", visible=False), # extraction_Agent
gr.update(value="Not Required", visible=False), # reflection_agent
gr.update(value="Base"), # task
gr.update(value="quick"), # mode
gr.update(value="", visible=False), # instruction
gr.update(value="", visible=False), # constraint
gr.update(value=True), # use_file
gr.update(value="", visible=False), # text
gr.update(value=None, visible=True), # file_path
gr.update(value=False), # update_case
gr.update(value="", visible=False), # truth # gr.update(value=False), # update_schema gr.update(value="", visible=False), # selfschema
gr.update(value=""), # py_output_gr
gr.update(value=""), # json_output_gr
gr.update(value="", visible=False), # error_output
)
with gr.Row():
submit_button_gr = gr.Button("Submit", variant="primary", scale=8)
clear_button = gr.Button("Clear", scale=5)
gr.HTML("""
<div style="width: 100%; text-align: center; font-size: 16px; font-weight: bold; position: relative; margin: 20px 0;">
<span style="position: absolute; left: 0; top: 50%; transform: translateY(-50%); width: 45%; border-top: 1px solid #ccc;"></span>
<span style="position: relative; z-index: 1; background-color: white; padding: 0 10px;">Output:</span>
<span style="position: absolute; right: 0; top: 50%; transform: translateY(-50%); width: 45%; border-top: 1px solid #ccc;"></span>
</div>
""")
error_output_gr = gr.Textbox(label="πŸ˜΅β€πŸ’« Ops, an Error Occurred", visible=False, interactive=False)
with gr.Row():
with gr.Column(scale=1):
py_output_gr = gr.Code(label="πŸ€” Generated Schema", language="python", lines=10, interactive=False)
with gr.Column(scale=1):
json_output_gr = gr.Code(label="πŸ˜‰ Final Answer", language="json", lines=10, interactive=False)
task_gr.change(fn=update_fields, inputs=task_gr, outputs=[instruction_gr, constraint_gr])
mode_gr.change(fn=customized_mode, inputs=mode_gr, outputs=[schema_agent_gr, extraction_Agent_gr, reflection_agent_gr])
use_file_gr.change(fn=update_input_fields, inputs=use_file_gr, outputs=[text_gr, file_path_gr])
update_case_gr.change(fn=update_case, inputs=update_case_gr, outputs=[truth_gr])
# update_schema_gr.change(fn=update_schema, inputs=update_schema_gr, outputs=[selfschema_gr])
example_button_gr.click(
fn=start_with_example,
inputs=[],
outputs=[
task_gr,
mode_gr,
use_file_gr,
file_path_gr,
text_gr,
instruction_gr,
constraint_gr,
update_case_gr,
truth_gr, # update_schema_gr, selfschema_gr,
schema_agent_gr,
extraction_Agent_gr,
reflection_agent_gr,
],
)
submit_button_gr.click(
fn=submit,
inputs=[
model_gr,
api_key_gr,
base_url_gr,
task_gr,
mode_gr,
instruction_gr,
constraint_gr,
text_gr,
use_file_gr,
file_path_gr,
update_case_gr,
truth_gr, # update_schema_gr, selfschema_gr,
schema_agent_gr,
extraction_Agent_gr,
reflection_agent_gr,
],
outputs=[py_output_gr, json_output_gr, error_output_gr],
show_progress=True,
)
clear_button.click(
fn=clear_all,
outputs=[
schema_agent_gr,
extraction_Agent_gr,
reflection_agent_gr,
task_gr,
mode_gr,
instruction_gr,
constraint_gr,
use_file_gr,
text_gr,
file_path_gr,
update_case_gr,
truth_gr, # update_schema_gr, selfschema_gr,
py_output_gr,
json_output_gr,
error_output_gr,
],
)
return demo
# Launch the front-end interface
if __name__ == "__main__":
interface = create_interface()
interface.launch() # the Gradio defalut URL usually is: 127.0.0.1:7860