File size: 9,210 Bytes
009d93e e6e7506 4754e33 e6e7506 4754e33 e6e7506 4754e33 e6e7506 4754e33 009d93e e6e7506 4754e33 e6e7506 009d93e e6e7506 009d93e e6e7506 009d93e e6e7506 009d93e e6e7506 009d93e e6e7506 009d93e e6e7506 009d93e e6e7506 009d93e e6e7506 009d93e e6e7506 009d93e e6e7506 009d93e e6e7506 009d93e e6e7506 009d93e e6e7506 009d93e e6e7506 009d93e e6e7506 009d93e e6e7506 009d93e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
"""
Data Processing Functions.
Supports:
- Segmentation of long text
- Segmentation of file content
"""
from langchain_community.document_loaders import TextLoader, PyPDFLoader, Docx2txtLoader, BSHTMLLoader, JSONLoader
from nltk.tokenize import sent_tokenize
from collections import Counter
import re
import json
import yaml
import os
import yaml
import os
import inspect
import ast
with open(os.path.join(os.path.dirname(__file__), "..", "config.yaml")) as file:
config = yaml.safe_load(file)
# Load configuration
def load_extraction_config(yaml_path):
# Read YAML content from the file path
if not os.path.exists(yaml_path):
print(f"Error: The config file '{yaml_path}' does not exist.")
return {}
with open(yaml_path, 'r') as file:
config = yaml.safe_load(file)
# Extract the 'extraction' configuration dictionary
model_config = config.get('model', {})
extraction_config = config.get('extraction', {})
# Model config
model_name_or_path = model_config.get('model_name_or_path', "")
model_category = model_config.get('category', "")
api_key = model_config.get('api_key', "")
base_url = model_config.get('base_url', "")
vllm_serve = model_config.get('vllm_serve', False)
# Extraction config
task = extraction_config.get('task', "")
instruction = extraction_config.get('instruction', "")
text = extraction_config.get('text', "")
output_schema = extraction_config.get('output_schema', "")
constraint = extraction_config.get('constraint', "")
truth = extraction_config.get('truth', "")
use_file = extraction_config.get('use_file', False)
file_path = extraction_config.get('file_path', "")
mode = extraction_config.get('mode', "quick")
update_case = extraction_config.get('update_case', False)
show_trajectory = extraction_config.get('show_trajectory', False)
# Construct config (optional: for constructing your knowledge graph)
if 'construct' in config:
construct_config = config.get('construct', {})
database = construct_config.get('database', "")
url = construct_config.get('url', "")
username = construct_config.get('username', "")
password = construct_config.get('password', "")
# Return a dictionary containing these variables
return {
"model": {
"model_name_or_path": model_name_or_path,
"category": model_category,
"api_key": api_key,
"base_url": base_url,
"vllm_serve": vllm_serve
},
"extraction": {
"task": task,
"instruction": instruction,
"text": text,
"output_schema": output_schema,
"constraint": constraint,
"truth": truth,
"use_file": use_file,
"file_path": file_path,
"mode": mode,
"update_case": update_case,
"show_trajectory": show_trajectory
},
"construct": {
"database": database,
"url": url,
"username": username,
"password": password
}
}
# Return a dictionary containing these variables
return {
"model": {
"model_name_or_path": model_name_or_path,
"category": model_category,
"api_key": api_key,
"base_url": base_url,
"vllm_serve": vllm_serve
},
"extraction": {
"task": task,
"instruction": instruction,
"text": text,
"output_schema": output_schema,
"constraint": constraint,
"truth": truth,
"use_file": use_file,
"file_path": file_path,
"mode": mode,
"update_case": update_case,
"show_trajectory": show_trajectory
}
}
# Split the string text into chunks
def chunk_str(text):
sentences = sent_tokenize(text)
chunks = []
current_chunk = []
current_length = 0
for sentence in sentences:
token_count = len(sentence.split())
if current_length + token_count <= config['agent']['chunk_token_limit']:
current_chunk.append(sentence)
current_length += token_count
else:
if current_chunk:
chunks.append(' '.join(current_chunk))
current_chunk = [sentence]
current_length = token_count
if current_chunk:
chunks.append(' '.join(current_chunk))
return chunks
# Load and split the content of a file
def chunk_file(file_path):
pages = []
if file_path.endswith(".pdf"):
loader = PyPDFLoader(file_path)
elif file_path.endswith(".txt"):
loader = TextLoader(file_path)
elif file_path.endswith(".docx"):
loader = Docx2txtLoader(file_path)
elif file_path.endswith(".html"):
loader = BSHTMLLoader(file_path)
elif file_path.endswith(".json"):
loader = JSONLoader(file_path)
else:
raise ValueError("Unsupported file format") # Inform that the format is unsupported
pages = loader.load_and_split()
docs = ""
for item in pages:
docs += item.page_content
pages = chunk_str(docs)
return pages
def process_single_quotes(text):
result = re.sub(r"(?<!\w)'|'(?!\w)", '"', text)
return result
def remove_empty_values(data):
def is_empty(value):
return value is None or value == [] or value == "" or value == {}
if isinstance(data, dict):
return {
k: remove_empty_values(v)
for k, v in data.items()
if not is_empty(v)
}
elif isinstance(data, list):
return [
remove_empty_values(item)
for item in data
if not is_empty(item)
]
else:
return data
def extract_json_dict(text):
if isinstance(text, dict):
return text
pattern = r'\{(?:[^{}]|(?:\{(?:[^{}]|(?:\{[^{}]*\})*)*\})*)*\}'
matches = re.findall(pattern, text)
if matches:
json_string = matches[-1]
json_string = process_single_quotes(json_string)
try:
json_dict = json.loads(json_string)
json_dict = remove_empty_values(json_dict)
if json_dict is None:
return "No valid information found."
return json_dict
except json.JSONDecodeError:
return json_string
else:
return text
def good_case_wrapper(example: str):
if example is None or example == "":
return ""
example = f"\nHere are some examples:\n{example}\n(END OF EXAMPLES)\nRefer to the reasoning steps and analysis in the examples to help complete the extraction task below.\n\n"
return example
def bad_case_wrapper(example: str):
if example is None or example == "":
return ""
example = f"\nHere are some examples of bad cases:\n{example}\n(END OF EXAMPLES)\nRefer to the reflection rules and reflection steps in the examples to help optimize the original result below.\n\n"
return example
def example_wrapper(example: str):
if example is None or example == "":
return ""
example = f"\nHere are some examples:\n{example}\n(END OF EXAMPLES)\n\n"
return example
def remove_redundant_space(s):
s = ' '.join(s.split())
s = re.sub(r"\s*(,|:|\(|\)|\.|_|;|'|-)\s*", r'\1', s)
return s
def format_string(s):
s = remove_redundant_space(s)
s = s.lower()
s = s.replace('{','').replace('}','')
s = re.sub(',+', ',', s)
s = re.sub('\.+', '.', s)
s = re.sub(';+', ';', s)
s = s.replace('’', "'")
return s
def calculate_metrics(y_truth: set, y_pred: set):
TP = len(y_truth & y_pred)
FN = len(y_truth - y_pred)
FP = len(y_pred - y_truth)
precision = TP / (TP + FP) if (TP + FP) > 0 else 0
recall = TP / (TP + FN) if (TP + FN) > 0 else 0
f1_score = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0
return precision, recall, f1_score
def current_function_name():
try:
stack = inspect.stack()
if len(stack) > 1:
outer_func_name = stack[1].function
return outer_func_name
else:
print("No caller function found")
return None
except Exception as e:
print(f"An error occurred: {e}")
pass
def normalize_obj(value):
if isinstance(value, dict):
return frozenset((k, normalize_obj(v)) for k, v in value.items())
elif isinstance(value, (list, set, tuple)):
return tuple(Counter(map(normalize_obj, value)).items())
elif isinstance(value, str):
return format_string(value)
return value
def dict_list_to_set(data_list):
result_set = set()
try:
for dictionary in data_list:
value_tuple = tuple(format_string(value) for value in dictionary.values())
result_set.add(value_tuple)
return result_set
except Exception as e:
print (f"Failed to convert dictionary list to set: {data_list}")
return result_set
|