# Copyright 2024 MIT Han Lab # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # SPDX-License-Identifier: Apache-2.0 import ipdb import torch from torch import nn from torch.nn import functional as F from .triton_lite_mla_kernels.linear_relu_fwd import linear_relu_fwd from .triton_lite_mla_kernels.pad_vk_mm_fwd import pad_vk_mm_fwd from .triton_lite_mla_kernels.vk_q_mm_divide_fwd import vk_q_mm_divide_fwd class TritonLiteMLAFwdFunction(torch.autograd.Function): @staticmethod def forward( ctx, x: torch.Tensor, qkv_weight: torch.Tensor, proj_weight: torch.Tensor, proj_bias: torch.Tensor, num_heads: int, head_dim: int, eps: float, ) -> torch.Tensor: # ipdb.set_trace() B, N, C = x.shape qkv, relu_mask = linear_relu_fwd(x, qkv_weight) # .view(B, N, 3, C) # B, N, 3, C qkv, relu_mask = qkv.view(B, N, 3, C), relu_mask.view(B, N, 3, C) q, k, v = qkv.unbind(2) # B, N, C k = k.reshape(B, N, num_heads, head_dim) v = v.reshape(B, N, num_heads, head_dim) q = q.reshape(B, N, num_heads, head_dim) vk = pad_vk_mm_fwd(v, k, torch.float, torch.float) proj_input, vk_q = vk_q_mm_divide_fwd(vk, q, eps, torch.float, x.dtype) proj_input = proj_input.view(B, N, C) y = F.linear(proj_input, proj_weight, proj_bias) ctx.save_for_backward(x, qkv_weight, relu_mask, v, k, vk, q, vk_q, proj_input, proj_weight) ctx.eps = eps return y @staticmethod def backward(ctx, grad_y: torch.Tensor): x, qkv_weight, relu_mask, v, k, vk, q, vk_q, proj_input, proj_weight = ctx.saved_tensors B, N, H, C1 = vk_q.shape C = C1 - 1 grad_proj_weight = grad_y.reshape(-1, H * C).T @ proj_input.view(-1, H * C) grad_proj_bias = grad_y.sum((0, 1)) # grad_proj_input = grad_y @ proj_weight grad_vk_q_numerator = grad_proj_input.view(B, N, H, C) / (vk_q[:, :, :, -1:] + ctx.eps) grad_vk_q_denominator = ( -(grad_proj_input.view(B, N, H, C) * vk_q[:, :, :, :-1]).sum(-1, keepdim=True) / (vk_q[:, :, :, -1:] + ctx.eps) ** 2 ) grad_vk_q = torch.cat([grad_vk_q_numerator, grad_vk_q_denominator], dim=-1) grad_q = (grad_vk_q.permute(0, 2, 1, 3) @ vk).permute(0, 2, 1, 3) grad_vk = grad_vk_q.permute(0, 2, 3, 1) @ q.float().permute(0, 2, 1, 3) grad_q.mul_(relu_mask[:, :, 0].view(B, N, H, C)) grad_v = (grad_vk @ k.float().permute(0, 2, 3, 1)).permute(0, 3, 1, 2)[:, :, :, :-1] grad_k = ((v.float().permute(0, 2, 1, 3) @ grad_vk[:, :, :-1]) + grad_vk[:, :, -1:]).permute(0, 2, 1, 3) grad_k.mul_(relu_mask[:, :, 1].view(B, N, H, C)) grad_qkv = torch.stack([grad_q, grad_k, grad_v], dim=2).view(B, N, 3 * H * C).to(x.dtype) grad_qkv_weight = grad_qkv.view(B * N, 3 * H * C).T @ x.view(B * N, H * C) grad_x = grad_qkv @ qkv_weight # ipdb.set_trace() return grad_x, grad_qkv_weight, grad_proj_weight, grad_proj_bias, None, None, None class TritonLiteMLAFwd(nn.Module): def __init__( self, dim: int, num_heads: int, eps=1e-15, use_bias=False, ): super().__init__() self.dim, self.num_heads, self.head_dim, self.eps = dim, num_heads, dim // num_heads, eps if use_bias: raise NotImplementedError(f"use_bias is not supported for TritonLiteMLA") self.qkv = nn.Linear(dim, dim * 3, bias=use_bias) self.proj = nn.Linear(dim, dim) def forward(self, x: torch.Tensor, mask=None, HW=None, block_id=None) -> torch.Tensor: return TritonLiteMLAFwdFunction.apply( x, self.qkv.weight, self.proj.weight, self.proj.bias, self.num_heads, self.head_dim, self.eps ) @property def module_str(self) -> str: _str = type(self).__name__ + "(" eps = f"{self.eps:.1E}" _str += f"i={self.in_dim},o={self.out_dim},h={self.heads},d={self.dim},eps={eps}" return _str def __repr__(self): return f"EPS{self.eps}-" + super().__repr__()