|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
from timm.models.vision_transformer import Mlp |
|
|
|
from diffusion.model.act import build_act, get_act_name |
|
from diffusion.model.norms import build_norm, get_norm_name |
|
from diffusion.model.utils import get_same_padding, val2tuple |
|
|
|
|
|
class ConvLayer(nn.Module): |
|
def __init__( |
|
self, |
|
in_dim: int, |
|
out_dim: int, |
|
kernel_size=3, |
|
stride=1, |
|
dilation=1, |
|
groups=1, |
|
padding: int or None = None, |
|
use_bias=False, |
|
dropout=0.0, |
|
norm="bn2d", |
|
act="relu", |
|
): |
|
super().__init__() |
|
if padding is None: |
|
padding = get_same_padding(kernel_size) |
|
padding *= dilation |
|
|
|
self.in_dim = in_dim |
|
self.out_dim = out_dim |
|
self.kernel_size = kernel_size |
|
self.stride = stride |
|
self.dilation = dilation |
|
self.groups = groups |
|
self.padding = padding |
|
self.use_bias = use_bias |
|
|
|
self.dropout = nn.Dropout2d(dropout, inplace=False) if dropout > 0 else None |
|
self.conv = nn.Conv2d( |
|
in_dim, |
|
out_dim, |
|
kernel_size=(kernel_size, kernel_size), |
|
stride=(stride, stride), |
|
padding=padding, |
|
dilation=(dilation, dilation), |
|
groups=groups, |
|
bias=use_bias, |
|
) |
|
self.norm = build_norm(norm, num_features=out_dim) |
|
self.act = build_act(act) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
if self.dropout is not None: |
|
x = self.dropout(x) |
|
x = self.conv(x) |
|
if self.norm: |
|
x = self.norm(x) |
|
if self.act: |
|
x = self.act(x) |
|
return x |
|
|
|
|
|
class GLUMBConv(nn.Module): |
|
def __init__( |
|
self, |
|
in_features: int, |
|
hidden_features: int, |
|
out_feature=None, |
|
kernel_size=3, |
|
stride=1, |
|
padding: int or None = None, |
|
use_bias=False, |
|
norm=(None, None, None), |
|
act=("silu", "silu", None), |
|
dilation=1, |
|
): |
|
out_feature = out_feature or in_features |
|
super().__init__() |
|
use_bias = val2tuple(use_bias, 3) |
|
norm = val2tuple(norm, 3) |
|
act = val2tuple(act, 3) |
|
|
|
self.glu_act = build_act(act[1], inplace=False) |
|
self.inverted_conv = ConvLayer( |
|
in_features, |
|
hidden_features * 2, |
|
1, |
|
use_bias=use_bias[0], |
|
norm=norm[0], |
|
act=act[0], |
|
) |
|
self.depth_conv = ConvLayer( |
|
hidden_features * 2, |
|
hidden_features * 2, |
|
kernel_size, |
|
stride=stride, |
|
groups=hidden_features * 2, |
|
padding=padding, |
|
use_bias=use_bias[1], |
|
norm=norm[1], |
|
act=None, |
|
dilation=dilation, |
|
) |
|
self.point_conv = ConvLayer( |
|
hidden_features, |
|
out_feature, |
|
1, |
|
use_bias=use_bias[2], |
|
norm=norm[2], |
|
act=act[2], |
|
) |
|
|
|
|
|
def forward(self, x: torch.Tensor, HW=None) -> torch.Tensor: |
|
B, N, C = x.shape |
|
if HW is None: |
|
H = W = int(N**0.5) |
|
else: |
|
H, W = HW |
|
|
|
x = x.reshape(B, H, W, C).permute(0, 3, 1, 2) |
|
x = self.inverted_conv(x) |
|
x = self.depth_conv(x) |
|
|
|
x, gate = torch.chunk(x, 2, dim=1) |
|
gate = self.glu_act(gate) |
|
x = x * gate |
|
|
|
x = self.point_conv(x) |
|
x = x.reshape(B, C, N).permute(0, 2, 1) |
|
|
|
return x |
|
|
|
|
|
class SlimGLUMBConv(GLUMBConv): |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
|
|
del self.inverted_conv |
|
self.out_dim = self.point_conv.out_dim |
|
|
|
def forward(self, x: torch.Tensor, HW=None) -> torch.Tensor: |
|
B, N, C = x.shape |
|
if HW is None: |
|
H = W = int(N**0.5) |
|
else: |
|
H, W = HW |
|
|
|
|
|
x = x.reshape(B, H, W, C).permute(0, 3, 1, 2) |
|
|
|
x = self.depth_conv(x) |
|
|
|
x, gate = torch.chunk(x, 2, dim=1) |
|
gate = self.glu_act(gate) |
|
x = x * gate |
|
|
|
x = self.point_conv(x) |
|
x = x.reshape(B, self.out_dim, N).permute(0, 2, 1) |
|
|
|
return x |
|
|
|
|
|
class MBConvPreGLU(nn.Module): |
|
def __init__( |
|
self, |
|
in_dim: int, |
|
out_dim: int, |
|
kernel_size=3, |
|
stride=1, |
|
mid_dim=None, |
|
expand=6, |
|
padding: int or None = None, |
|
use_bias=False, |
|
norm=(None, None, "ln2d"), |
|
act=("silu", "silu", None), |
|
): |
|
super().__init__() |
|
use_bias = val2tuple(use_bias, 3) |
|
norm = val2tuple(norm, 3) |
|
act = val2tuple(act, 3) |
|
|
|
mid_dim = mid_dim or round(in_dim * expand) |
|
|
|
self.inverted_conv = ConvLayer( |
|
in_dim, |
|
mid_dim * 2, |
|
1, |
|
use_bias=use_bias[0], |
|
norm=norm[0], |
|
act=None, |
|
) |
|
self.glu_act = build_act(act[0], inplace=False) |
|
self.depth_conv = ConvLayer( |
|
mid_dim, |
|
mid_dim, |
|
kernel_size, |
|
stride=stride, |
|
groups=mid_dim, |
|
padding=padding, |
|
use_bias=use_bias[1], |
|
norm=norm[1], |
|
act=act[1], |
|
) |
|
self.point_conv = ConvLayer( |
|
mid_dim, |
|
out_dim, |
|
1, |
|
use_bias=use_bias[2], |
|
norm=norm[2], |
|
act=act[2], |
|
) |
|
|
|
def forward(self, x: torch.Tensor, HW=None) -> torch.Tensor: |
|
B, N, C = x.shape |
|
if HW is None: |
|
H = W = int(N**0.5) |
|
else: |
|
H, W = HW |
|
|
|
x = x.reshape(B, H, W, C).permute(0, 3, 1, 2) |
|
|
|
x = self.inverted_conv(x) |
|
x, gate = torch.chunk(x, 2, dim=1) |
|
gate = self.glu_act(gate) |
|
x = x * gate |
|
|
|
x = self.depth_conv(x) |
|
x = self.point_conv(x) |
|
|
|
x = x.reshape(B, C, N).permute(0, 2, 1) |
|
return x |
|
|
|
@property |
|
def module_str(self) -> str: |
|
_str = f"{self.depth_conv.kernel_size}{type(self).__name__}(" |
|
_str += f"in={self.inverted_conv.in_dim},mid={self.depth_conv.in_dim},out={self.point_conv.out_dim},s={self.depth_conv.stride}" |
|
_str += ( |
|
f",norm={get_norm_name(self.inverted_conv.norm)}" |
|
f"+{get_norm_name(self.depth_conv.norm)}" |
|
f"+{get_norm_name(self.point_conv.norm)}" |
|
) |
|
_str += ( |
|
f",act={get_act_name(self.inverted_conv.act)}" |
|
f"+{get_act_name(self.depth_conv.act)}" |
|
f"+{get_act_name(self.point_conv.act)}" |
|
) |
|
_str += f",glu_act={get_act_name(self.glu_act)})" |
|
return _str |
|
|
|
|
|
class DWMlp(Mlp): |
|
"""MLP as used in Vision Transformer, MLP-Mixer and related networks""" |
|
|
|
def __init__( |
|
self, |
|
in_features, |
|
hidden_features=None, |
|
out_features=None, |
|
act_layer=nn.GELU, |
|
bias=True, |
|
drop=0.0, |
|
kernel_size=3, |
|
stride=1, |
|
dilation=1, |
|
padding=None, |
|
): |
|
super().__init__( |
|
in_features=in_features, |
|
hidden_features=hidden_features, |
|
out_features=out_features, |
|
act_layer=act_layer, |
|
bias=bias, |
|
drop=drop, |
|
) |
|
hidden_features = hidden_features or in_features |
|
self.hidden_features = hidden_features |
|
if padding is None: |
|
padding = get_same_padding(kernel_size) |
|
padding *= dilation |
|
|
|
self.conv = nn.Conv2d( |
|
hidden_features, |
|
hidden_features, |
|
kernel_size=(kernel_size, kernel_size), |
|
stride=(stride, stride), |
|
padding=padding, |
|
dilation=(dilation, dilation), |
|
groups=hidden_features, |
|
bias=bias, |
|
) |
|
|
|
def forward(self, x, HW=None): |
|
B, N, C = x.shape |
|
if HW is None: |
|
H = W = int(N**0.5) |
|
else: |
|
H, W = HW |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop1(x) |
|
x = x.reshape(B, H, W, self.hidden_features).permute(0, 3, 1, 2) |
|
x = self.conv(x) |
|
x = x.reshape(B, self.hidden_features, N).permute(0, 2, 1) |
|
x = self.fc2(x) |
|
x = self.drop2(x) |
|
return x |
|
|
|
|
|
class Mlp(Mlp): |
|
"""MLP as used in Vision Transformer, MLP-Mixer and related networks""" |
|
|
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, bias=True, drop=0.0): |
|
super().__init__( |
|
in_features=in_features, |
|
hidden_features=hidden_features, |
|
out_features=out_features, |
|
act_layer=act_layer, |
|
bias=bias, |
|
drop=drop, |
|
) |
|
|
|
def forward(self, x, HW=None): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop1(x) |
|
x = self.fc2(x) |
|
x = self.drop2(x) |
|
return x |
|
|
|
|
|
if __name__ == "__main__": |
|
model = GLUMBConv( |
|
1152, |
|
1152 * 4, |
|
1152, |
|
use_bias=(True, True, False), |
|
norm=(None, None, None), |
|
act=("silu", "silu", None), |
|
).cuda() |
|
input = torch.randn(4, 256, 1152).cuda() |
|
output = model(input) |
|
|