File size: 15,059 Bytes
d643072
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
import io
import os
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser

import clip
import numpy as np
import torch
import webdataset as wds
from PIL import Image
from torch.utils.data import DataLoader, Dataset, IterableDataset

from diffusion.data.transforms import get_transform
from tools.metrics.utils import tracker

try:
    from tqdm import tqdm
except ImportError:
    # If tqdm is not available, provide a mock version of it
    def tqdm(x):
        return x


import json

IMAGE_EXTENSIONS = {"bmp", "jpg", "jpeg", "pgm", "png", "ppm", "tif", "tiff", "webp"}
TEXT_EXTENSIONS = {"txt"}


class DummyDataset(Dataset):
    FLAGS = ["img", "txt", "json"]

    def __init__(
        self,
        real_path,
        fake_path,
        real_flag: str = "img",
        fake_flag: str = "img",
        gen_img_path="",
        transform=None,
        tokenizer=None,
    ) -> None:
        super().__init__()
        assert (
            real_flag in self.FLAGS and fake_flag in self.FLAGS
        ), f"CLIP Score only support modality of {self.FLAGS}. However, get {real_flag} and {fake_flag}"
        self.gen_img_path = gen_img_path
        print(f"images are from {gen_img_path}")
        self.real_folder = self._load_img_from_path(real_path)
        self.real_flag = real_flag
        self.fake_data = self._load_txt_from_path(fake_path)
        self.transform = transform
        self.tokenizer = tokenizer
        self.data_dict = {}

    def __len__(self):
        return len(self.real_folder)

    def __getitem__(self, index):
        if index >= len(self):
            raise IndexError
        real_path = self.real_folder[index]
        real_data = self._load_modality(real_path, self.real_flag)
        fake_data = self._load_txt(self.fake_data[index])
        sample = dict(real=real_data, fake=fake_data, prompt=self.fake_data[index])
        return sample

    def _load_modality(self, path, modality):
        if modality == "img":
            data = self._load_img(path)
        else:
            raise TypeError(f"Got unexpected modality: {modality}")
        return data

    def _load_txt(self, data):
        if self.tokenizer is not None:
            data = self.tokenizer(data, context_length=77, truncate=True).squeeze()
        return data

    def _load_img(self, path):
        img = Image.open(path)
        if self.transform is not None:
            img = self.transform(img)
        return img

    def _load_img_from_path(self, path):
        image_list = []
        if path.endswith(".json"):
            with open(path) as file:
                data_dict = json.load(file)
            all_lines = list(data_dict.keys())[:sample_nums]
            if isinstance(all_lines, list):
                for k in all_lines:
                    img_path = os.path.join(self.gen_img_path, f"{k}.jpg")
                    image_list.append(img_path)
            elif isinstance(all_lines, dict):
                assert sample_nums >= 30_000, ValueError(f"{sample_nums} is not supported for json files")
                for k, v in all_lines.items():
                    img_path = os.path.join(self.gen_img_path, f"{k}.jpg")
                    image_list.append(img_path)

        else:
            raise ValueError(f"Only JSON file type is supported now. Wrong with: {path}")

        return image_list

    def _load_txt_from_path(self, path):
        txt_list = []
        if path.endswith(".json"):
            with open(path) as file:
                data_dict = json.load(file)
            all_lines = list(data_dict.keys())[:sample_nums]
            if isinstance(all_lines, list):
                for k in all_lines:
                    v = data_dict[k]
                    txt_list.append(v["prompt"])
            elif isinstance(all_lines, dict):
                assert sample_nums >= 30_000, ValueError(f"{sample_nums} is not supported for json files")
                for k, v in all_lines.items():
                    txt_list.append(v["prompt"])
        else:
            raise ValueError(f"Only JSON file type is supported now. Wrong with: {path}")

        return txt_list


class DummyTarDataset(IterableDataset):
    def __init__(
        self, tar_path, transform=None, external_json_path=None, prompt_key="prompt", tokenizer=None, **kwargs
    ):
        assert ".tar" in tar_path
        self.sample_nums = args.sample_nums
        self.dataset = (
            wds.WebDataset(tar_path)
            .map(self.safe_decode)
            .to_tuple("png;jpg", "json", "__key__")
            .map(self.process_sample)
            .slice(0, self.sample_nums)
        )
        if external_json_path is not None and os.path.exists(external_json_path):
            print(f"Loading {external_json_path}, wait...")
            self.json_file = json.load(open(external_json_path))
        else:
            self.json_file = {}
            assert prompt_key == "prompt"
        self.prompt_key = prompt_key
        self.transform = transform
        self.tokenizer = tokenizer

    def __iter__(self):
        return self._generator()

    def _generator(self):
        for i, (ori_img, info, key) in enumerate(self.dataset):
            if self.transform is not None:
                img = self.transform(ori_img)

            if key in self.json_file:
                info.update(self.json_file[key])

            prompt = info.get(self.prompt_key, "")
            if not prompt:
                prompt = ""
                print(f"{self.prompt_key} not exist in {key}.json")
            txt_feat = self._load_txt(prompt)

            yield dict(
                real=img, fake=txt_feat, prompt=prompt, ori_img=np.array(img), key=key, prompt_key=self.prompt_key
            )

    def __len__(self):
        return self.sample_nums

    def _load_txt(self, data):
        if self.tokenizer is not None:
            data = self.tokenizer(data, context_length=77, truncate=True).squeeze()
        return data

    @staticmethod
    def process_sample(sample):
        try:
            image_bytes, json_bytes, key = sample
            image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
            json_dict = json.loads(json_bytes)
            return image, json_dict, key
        except (ValueError, TypeError, OSError) as e:
            print(f"Skipping sample due to error: {e}")
            return None

    @staticmethod
    def safe_decode(sample):
        def custom_decode(sample):
            result = {}
            for k, v in sample.items():
                result[k] = v
            return result

        try:
            return custom_decode(sample)
        except Exception as e:
            print(f"skipping sample due to decode error: {e}")
            return None


@torch.no_grad()
def calculate_clip_score(dataloader, model, real_flag, fake_flag, save_json_path=None):
    score_acc = 0.0
    sample_num = 0.0
    json_dict = {} if save_json_path is not None else None
    logit_scale = model.logit_scale.exp()
    for batch_data in tqdm(dataloader, desc=f"CLIP-Score: {args.exp_name}", position=args.gpu_id, leave=True):
        real_features = forward_modality(model, batch_data["real"], real_flag)
        fake_features = forward_modality(model, batch_data["fake"], fake_flag)

        # normalize features
        real_features = real_features / real_features.norm(dim=1, keepdim=True).to(torch.float32)
        fake_features = fake_features / fake_features.norm(dim=1, keepdim=True).to(torch.float32)

        score = logit_scale * (fake_features * real_features).sum()
        if save_json_path is not None:
            json_dict[batch_data["key"][0]] = {f"{batch_data['prompt_key'][0]}": f"{score:.04f}"}

        score_acc += score
        sample_num += batch_data["real"].shape[0]

    if save_json_path is not None:
        json.dump(json_dict, open(save_json_path, "w"))
    return score_acc / sample_num


@torch.no_grad()
def calculate_clip_score_official(dataloader):
    import numpy as np
    from torchmetrics.multimodal.clip_score import CLIPScore

    clip_score_fn = CLIPScore(model_name_or_path="openai/clip-vit-large-patch14").to(device)
    # clip_score_fn = CLIPScore(model_name_or_path="openai/clip-vit-base-patch16").to(device)
    all_clip_scores = []

    for batch_data in tqdm(dataloader, desc=args.exp_name, position=args.gpu_id, leave=True):
        imgs = batch_data["real"].add_(1.0).mul_(0.5)
        imgs = (imgs * 255).to(dtype=torch.uint8, device=device)

        prompts = batch_data["prompt"]
        clip_scores = clip_score_fn(imgs, prompts).detach().cpu()
        all_clip_scores.append(float(clip_scores))

    clip_scores = float(np.mean(all_clip_scores))
    return clip_scores


def forward_modality(model, data, flag):
    device = next(model.parameters()).device
    if flag == "img":
        features = model.encode_image(data.to(device))
    elif flag == "txt":
        features = model.encode_text(data.to(device))
    else:
        raise TypeError
    return features


def main():
    txt_path = args.txt_path if args.txt_path is not None else args.img_path
    gen_img_path = str(os.path.join(args.img_path, args.exp_name))
    if ".tar" in gen_img_path:
        save_txt_path = os.path.join(txt_path, f"{args.exp_name}_{args.tar_prompt_key}_clip_score.txt").replace(
            ".tar", ""
        )
        save_json_path = save_txt_path.replace(".tar", "").replace(".txt", ".json")
        if os.path.exists(save_json_path):
            print(f"{save_json_path} exists. Finished.")
            return None
    else:
        save_txt_path = os.path.join(txt_path, f"{args.exp_name}_sample{sample_nums}_clip_score.txt")
        save_json_path = None
    if os.path.exists(save_txt_path):
        with open(save_txt_path) as f:
            clip_score = f.readlines()[0].strip()
        print(f"CLIP Score:  {clip_score}: {args.exp_name}")
        return {args.exp_name: float(clip_score)}

    print(f"Loading CLIP model: {args.clip_model}")
    if args.clipscore_type == "diffusers":
        preprocess = get_transform("default_train", 512)
    else:
        model, preprocess = clip.load(args.clip_model, device=device)

    if ".tar" in gen_img_path:
        dataset = DummyTarDataset(
            gen_img_path,
            transform=preprocess,
            external_json_path=args.external_json_file,
            prompt_key=args.tar_prompt_key,
            tokenizer=clip.tokenize,
        )
    else:
        dataset = DummyDataset(
            args.real_path,
            args.fake_path,
            args.real_flag,
            args.fake_flag,
            transform=preprocess,
            tokenizer=clip.tokenize,
            gen_img_path=gen_img_path,
        )
    dataloader = DataLoader(dataset, args.batch_size, num_workers=num_workers, pin_memory=True)

    print("Calculating CLIP Score:")
    if args.clipscore_type == "diffusers":
        clip_score = calculate_clip_score_official(dataloader)
    else:
        clip_score = calculate_clip_score(
            dataloader, model, args.real_flag, args.fake_flag, save_json_path=save_json_path
        )
        clip_score = clip_score.cpu().item()
    print("CLIP Score: ", clip_score)
    with open(save_txt_path, "w") as file:
        file.write(str(clip_score))
    print(f"Result saved at: {save_txt_path}")

    return {args.exp_name: clip_score}


def parse_args():
    parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)
    parser.add_argument("--batch-size", type=int, default=50, help="Batch size to use")
    parser.add_argument("--clip-model", type=str, default="ViT-L/14", help="CLIP model to use")
    # parser.add_argument('--clip-model', type=str, default='ViT-B/16', help='CLIP model to use')
    parser.add_argument("--img_path", type=str, default=None)
    parser.add_argument("--txt_path", type=str, default=None)
    parser.add_argument("--sample_nums", type=int, default=30_000)
    parser.add_argument("--exp_name", type=str, default="Sana")
    parser.add_argument(
        "--num-workers", type=int, help="Number of processes to use for data loading.  Defaults to `min(8, num_cpus)`"
    )
    parser.add_argument("--device", type=str, default=None, help="Device to use. Like cuda, cuda:0 or cpu")
    parser.add_argument("--real_flag", type=str, default="img", help="The modality of real path. Default to img")
    parser.add_argument("--fake_flag", type=str, default="txt", help="The modality of real path. Default to txt")
    parser.add_argument("--real_path", type=str, help="Paths to the generated images")
    parser.add_argument("--fake_path", type=str, help="Paths to the generated images")
    parser.add_argument("--external_json_file", type=str, default=None, help="external meta json file for tar_file")
    parser.add_argument("--tar_prompt_key", type=str, default="prompt", help="key name of prompt in json")

    # online logging setting
    parser.add_argument("--clipscore_type", type=str, default="self", choices=["diffusers", "self"])
    parser.add_argument("--log_metric", type=str, default="metric")
    parser.add_argument("--gpu_id", type=int, default=0)
    parser.add_argument("--log_clip_score", action="store_true")
    parser.add_argument("--suffix_label", type=str, default="", help="used for clip_score online log")
    parser.add_argument("--tracker_pattern", type=str, default="epoch_step", help="used for fid online log")
    parser.add_argument(
        "--report_to",
        type=str,
        default=None,
        help=(
            'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
            ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
        ),
    )
    parser.add_argument(
        "--tracker_project_name",
        type=str,
        default="t2i-evit-baseline",
        help=(
            "The `project_name` argument passed to Accelerator.init_trackers for"
            " more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator"
        ),
    )
    parser.add_argument(
        "--name",
        type=str,
        default="baseline",
        help=("Wandb Project Name"),
    )
    args = parser.parse_args()
    return args


if __name__ == "__main__":
    args = parse_args()
    sample_nums = args.sample_nums
    if args.device is None:
        device = torch.device("cuda" if (torch.cuda.is_available()) else "cpu")
    else:
        device = torch.device(args.device)

    if args.num_workers is None:
        try:
            num_cpus = len(os.sched_getaffinity(0))
        except AttributeError:
            num_cpus = os.cpu_count()
        num_workers = min(num_cpus, 8) if num_cpus is not None else 0
    else:
        num_workers = args.num_workers

    args.exp_name = os.path.basename(args.exp_name) or os.path.dirname(args.exp_name)
    clip_score_result = main()
    if args.log_clip_score:
        tracker(args, clip_score_result, args.suffix_label, pattern=args.tracker_pattern, metric="CLIP-Score")