File size: 2,622 Bytes
d643072 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
# Copyright 2024 MIT Han Lab
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
from typing import Any, Optional, Union
import numpy as np
import torch
__all__ = [
"torch_randint",
"torch_random",
"torch_shuffle",
"torch_uniform",
"torch_random_choices",
]
def torch_randint(low: int, high: int, generator: Optional[torch.Generator] = None) -> int:
"""uniform: [low, high)"""
if low == high:
return low
else:
assert low < high
return int(torch.randint(low=low, high=high, generator=generator, size=(1,)))
def torch_random(generator: Optional[torch.Generator] = None) -> float:
"""uniform distribution on the interval [0, 1)"""
return float(torch.rand(1, generator=generator))
def torch_shuffle(src_list: list[Any], generator: Optional[torch.Generator] = None) -> list[Any]:
rand_indexes = torch.randperm(len(src_list), generator=generator).tolist()
return [src_list[i] for i in rand_indexes]
def torch_uniform(low: float, high: float, generator: Optional[torch.Generator] = None) -> float:
"""uniform distribution on the interval [low, high)"""
rand_val = torch_random(generator)
return (high - low) * rand_val + low
def torch_random_choices(
src_list: list[Any],
generator: Optional[torch.Generator] = None,
k=1,
weight_list: Optional[list[float]] = None,
) -> Union[Any, list]:
if weight_list is None:
rand_idx = torch.randint(low=0, high=len(src_list), generator=generator, size=(k,))
out_list = [src_list[i] for i in rand_idx]
else:
assert len(weight_list) == len(src_list)
accumulate_weight_list = np.cumsum(weight_list)
out_list = []
for _ in range(k):
val = torch_uniform(0, accumulate_weight_list[-1], generator)
active_id = 0
for i, weight_val in enumerate(accumulate_weight_list):
active_id = i
if weight_val > val:
break
out_list.append(src_list[active_id])
return out_list[0] if k == 1 else out_list
|