Toursim-Test / src /core /embeddings.py
zhuhai111's picture
Upload 43 files
7cc8bc0 verified
from sentence_transformers import SentenceTransformer
import torch
import numpy as np
import os
import logging
class EmbeddingModel:
def __init__(self, model_name="BAAI/bge-m3"):
try:
# 使用 Hugging Face 模型 ID
self.model = SentenceTransformer(model_name)
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model.to(self.device)
logging.info(f"成功加载嵌入模型 {model_name}{self.device} 设备")
except Exception as e:
logging.error(f"加载模型失败: {str(e)}")
raise
def encode(self, texts, batch_size=32):
"""
将文本转换为向量表示
"""
embeddings = self.model.encode(
texts,
batch_size=batch_size,
show_progress_bar=True,
normalize_embeddings=True
)
return embeddings
def encode_queries(self, queries):
"""
为查询文本添加特殊前缀并编码
BGE模型推荐在查询前添加"Represent this sentence for searching relevant passages: "
"""
prefix = "Represent this sentence for searching relevant passages: "
if isinstance(queries, str):
queries = [queries]
prefixed_queries = [prefix + query for query in queries]
return self.encode(prefixed_queries)