File size: 933 Bytes
614e06a
 
 
bca3027
614e06a
 
 
 
bca3027
614e06a
bca3027
614e06a
 
bca3027
614e06a
bca3027
614e06a
 
 
 
 
 
bca3027
614e06a
bca3027
614e06a
 
 
bca3027
614e06a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import requests
from PIL import Image
from transformers import AutoProcessor, AutoModelForCausalLM

model = AutoModelForCausalLM.from_pretrained(
    "yifeihu/TFT-ID-1.0", trust_remote_code=True
)
processor = AutoProcessor.from_pretrained("yifeihu/TFT-ID-1.0", trust_remote_code=True)

prompt = "<OD>"

url = "https://huggingface.co/yifeihu/TF-ID-base/resolve/main/arxiv_2305_10853_5.png?download=true"
image = Image.open(requests.get(url, stream=True).raw)

inputs = processor(text=prompt, images=image, return_tensors="pt")

generated_ids = model.generate(
    input_ids=inputs["input_ids"],
    pixel_values=inputs["pixel_values"],
    max_new_tokens=1024,
    do_sample=False,
    num_beams=3,
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]

parsed_answer = processor.post_process_generation(
    generated_text, task="<OD>", image_size=(image.width, image.height)
)

print(parsed_answer)