File size: 1,705 Bytes
d2fca5c
 
 
 
 
 
 
 
 
 
 
58dd7a5
d2fca5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58dd7a5
d2fca5c
 
 
58dd7a5
d2fca5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import torch
from transformers import AutoTokenizer, AutoModelForTokenClassification
import gradio as gr

# Load model and tokenizer once
model_name = "zekun-li/geolm-base-toponym-recognition"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForTokenClassification.from_pretrained(model_name)
model.to("cpu")  # Use "cuda" if you have GPU
model.eval()


def get_toponym_entities(text):
    inputs = tokenizer(
        text,
        return_offsets_mapping=True,
        return_tensors="pt",
        truncation=True,
        max_length=512,
    )
    offset_mapping = inputs.pop("offset_mapping")[0]
    input_ids = inputs["input_ids"]
    
    with torch.no_grad():
        outputs = model(**inputs)
        predictions = torch.argmax(outputs.logits, dim=2)[0]

    entities = []
    for idx, label_id in enumerate(predictions):
        if label_id != 0 and idx < len(offset_mapping):
            start, end = offset_mapping[idx].tolist()
            if end > start:
                entities.append({"start": start, "end": end, "entity": "Toponym"})

    return {"text": text, "entities": entities}


# Launch Gradio app
demo = gr.Interface(
    fn=get_toponym_entities,
    inputs=gr.Textbox(lines=10, placeholder="Enter text with place names..."),
    outputs=gr.HighlightedText(),
    title="🌍 Toponym Recognition with GeoLM",
    description="Enter a paragraph and detect highlighted place names using the zekun-li/geolm-base-toponym-recognition model.",
    examples=[
        ["Minneapolis, officially the City of Minneapolis, is a city in Minnesota."],
        ["Los Angeles is the most populous city in California."],
    ],
)

if __name__ == "__main__":
    demo.launch()