Spaces:
Running
Running
Commit
·
0918d3a
1
Parent(s):
2d2dc23
refactor: cosine similarity and text splitting
Browse files
app.py
CHANGED
@@ -1,46 +1,58 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import spaces
|
3 |
-
import subprocess
|
4 |
import os
|
5 |
-
import shutil
|
6 |
-
import string
|
7 |
-
import random
|
8 |
import glob
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
from pypdf import PdfReader
|
10 |
from sentence_transformers import SentenceTransformer
|
11 |
|
|
|
12 |
model_name = os.environ.get("MODEL", "Snowflake/snowflake-arctic-embed-m")
|
13 |
-
chunk_size = int(os.environ.get("CHUNK_SIZE",
|
14 |
-
|
15 |
|
16 |
model = SentenceTransformer(model_name)
|
17 |
-
|
18 |
|
19 |
-
@spaces.GPU
|
20 |
-
def embed(queries, chunks) -> dict[str, list[tuple[str, float]]]:
|
21 |
-
query_embeddings = model.encode(queries, prompt_name="query")
|
22 |
-
document_embeddings = model.encode(chunks)
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
return results
|
32 |
|
|
|
|
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
if len(text) > 0:
|
39 |
-
full_text += f"---- Page {idx} ----\n" + page.extract_text() + "\n\n"
|
40 |
|
41 |
-
|
|
|
|
|
|
|
42 |
|
43 |
-
|
|
|
|
|
|
|
|
|
44 |
plain_text_filetypes = [
|
45 |
".txt",
|
46 |
".csv",
|
@@ -54,7 +66,7 @@ def convert(filename) -> str:
|
|
54 |
]
|
55 |
# Already a plain text file that wouldn't benefit from pandoc so return the content
|
56 |
if any(filename.endswith(ft) for ft in plain_text_filetypes):
|
57 |
-
with open(filename, "r") as f:
|
58 |
return f.read()
|
59 |
|
60 |
if filename.endswith(".pdf"):
|
@@ -63,75 +75,116 @@ def convert(filename) -> str:
|
|
63 |
raise ValueError(f"Unsupported file type: {filename}")
|
64 |
|
65 |
|
66 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
chunks = []
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
return chunks
|
73 |
|
|
|
74 |
@spaces.GPU
|
75 |
-
def predict(query,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
# Embed the query
|
77 |
query_embedding = model.encode(query, prompt_name="query")
|
78 |
|
79 |
# Initialize a list to store all chunks and their similarities across all documents
|
80 |
all_chunks = []
|
81 |
-
|
82 |
# Iterate through all documents
|
83 |
-
for
|
84 |
# Calculate dot product between query and document embeddings
|
85 |
-
similarities = doc["embeddings"]
|
86 |
-
|
|
|
87 |
# Add chunks and similarities to the all_chunks list
|
88 |
-
all_chunks.extend(
|
89 |
|
90 |
# Sort all chunks by similarity
|
91 |
-
all_chunks.sort(key=lambda x: x[
|
92 |
-
|
93 |
-
# Initialize a dictionary to store relevant chunks for each document
|
94 |
-
relevant_chunks = {}
|
95 |
-
|
96 |
-
# Add most relevant chunks until max_characters is reached
|
97 |
-
total_chars = 0
|
98 |
-
for filename, chunk, _ in all_chunks:
|
99 |
-
if total_chars + len(chunk) <= max_characters:
|
100 |
-
if filename not in relevant_chunks:
|
101 |
-
relevant_chunks[filename] = []
|
102 |
-
relevant_chunks[filename].append(chunk)
|
103 |
-
total_chars += len(chunk)
|
104 |
-
else:
|
105 |
-
break
|
106 |
|
107 |
-
return
|
108 |
|
109 |
|
|
|
|
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
-
chunks = chunk_to_length(converted_doc, chunk_size)
|
120 |
-
embeddings = model.encode(chunks)
|
121 |
|
122 |
-
|
123 |
-
"chunks": chunks,
|
124 |
-
"embeddings": embeddings,
|
125 |
-
}
|
126 |
|
127 |
|
128 |
gr.Interface(
|
129 |
predict,
|
130 |
inputs=[
|
131 |
gr.Textbox(label="Query asked about the documents"),
|
132 |
-
gr.Number(label="
|
133 |
],
|
134 |
-
outputs=[gr.
|
135 |
-
title="
|
136 |
-
description="
|
137 |
-
).launch()
|
|
|
|
|
|
|
|
|
1 |
import os
|
|
|
|
|
|
|
2 |
import glob
|
3 |
+
import pickle
|
4 |
+
from pathlib import Path
|
5 |
+
|
6 |
+
import gradio as gr
|
7 |
+
import spaces
|
8 |
+
import numpy as np
|
9 |
from pypdf import PdfReader
|
10 |
from sentence_transformers import SentenceTransformer
|
11 |
|
12 |
+
|
13 |
model_name = os.environ.get("MODEL", "Snowflake/snowflake-arctic-embed-m")
|
14 |
+
chunk_size = int(os.environ.get("CHUNK_SIZE", 1000))
|
15 |
+
default_k = int(os.environ.get("DEFAULT_K", 5))
|
16 |
|
17 |
model = SentenceTransformer(model_name)
|
18 |
+
docs = {}
|
19 |
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
def extract_text_from_pdf(reader: PdfReader) -> str:
|
22 |
+
"""Extract text from PDF pages
|
23 |
+
|
24 |
+
Parameters
|
25 |
+
----------
|
26 |
+
reader : PdfReader
|
27 |
+
PDF reader
|
28 |
+
|
29 |
+
Returns
|
30 |
+
-------
|
31 |
+
str
|
32 |
+
Raw text
|
33 |
+
"""
|
34 |
+
content = [page.extract_text().strip() for page in reader.pages]
|
35 |
+
return "\n\n".join(content).strip()
|
36 |
|
|
|
37 |
|
38 |
+
def convert(filename: str) -> str:
|
39 |
+
"""Convert file content to raw text
|
40 |
|
41 |
+
Parameters
|
42 |
+
----------
|
43 |
+
filename : str
|
44 |
+
The filename or path
|
|
|
|
|
45 |
|
46 |
+
Returns
|
47 |
+
-------
|
48 |
+
str
|
49 |
+
The raw text
|
50 |
|
51 |
+
Raises
|
52 |
+
------
|
53 |
+
ValueError
|
54 |
+
If the file type is not supported.
|
55 |
+
"""
|
56 |
plain_text_filetypes = [
|
57 |
".txt",
|
58 |
".csv",
|
|
|
66 |
]
|
67 |
# Already a plain text file that wouldn't benefit from pandoc so return the content
|
68 |
if any(filename.endswith(ft) for ft in plain_text_filetypes):
|
69 |
+
with open(filename, "r", encoding="utf-8") as f:
|
70 |
return f.read()
|
71 |
|
72 |
if filename.endswith(".pdf"):
|
|
|
75 |
raise ValueError(f"Unsupported file type: {filename}")
|
76 |
|
77 |
|
78 |
+
def generate_chunks(text: str, max_length: int) -> list[str]:
|
79 |
+
"""Generate chunks from a file's raw text. Chunks are calculated based
|
80 |
+
on the `max_lenght` parameter and the split character (.)
|
81 |
+
|
82 |
+
Parameters
|
83 |
+
----------
|
84 |
+
text : str
|
85 |
+
The raw text
|
86 |
+
max_length : int
|
87 |
+
Maximum number of characters a chunk can have. Note that chunks
|
88 |
+
may not have this exact lenght, as another component is also
|
89 |
+
involved in the splitting process
|
90 |
+
|
91 |
+
Returns
|
92 |
+
-------
|
93 |
+
list[str]
|
94 |
+
A list of chunks/nodes
|
95 |
+
"""
|
96 |
+
|
97 |
+
segments = text.split(".")
|
98 |
chunks = []
|
99 |
+
chunk = ""
|
100 |
+
|
101 |
+
for current_segment in segments:
|
102 |
+
if len(chunk) < max_length:
|
103 |
+
chunk += current_segment
|
104 |
+
else:
|
105 |
+
chunks.append(chunk)
|
106 |
+
chunk = current_segment
|
107 |
+
if chunk:
|
108 |
+
chunks.append(chunk)
|
109 |
return chunks
|
110 |
|
111 |
+
|
112 |
@spaces.GPU
|
113 |
+
def predict(query: str, k: int = 5) -> str:
|
114 |
+
"""Find k most relevant chunks based on the given query
|
115 |
+
|
116 |
+
Parameters
|
117 |
+
----------
|
118 |
+
query : str
|
119 |
+
The input query
|
120 |
+
k : int, optional
|
121 |
+
Number of relevant chunks to return, by default 5
|
122 |
+
|
123 |
+
Returns
|
124 |
+
-------
|
125 |
+
str
|
126 |
+
The k chunks concatenated together as a single string.
|
127 |
+
|
128 |
+
Example
|
129 |
+
-------
|
130 |
+
If k=2, the returned string might look like:
|
131 |
+
|
132 |
+
"CONTEXT:\n\nchunk-1\n\nchunk-2"
|
133 |
+
|
134 |
+
"""
|
135 |
# Embed the query
|
136 |
query_embedding = model.encode(query, prompt_name="query")
|
137 |
|
138 |
# Initialize a list to store all chunks and their similarities across all documents
|
139 |
all_chunks = []
|
|
|
140 |
# Iterate through all documents
|
141 |
+
for doc in docs.values():
|
142 |
# Calculate dot product between query and document embeddings
|
143 |
+
similarities = np.dot(doc["embeddings"], query_embedding) / (
|
144 |
+
np.linalg.norm(doc["embeddings"]) * np.linalg.norm(query_embedding)
|
145 |
+
)
|
146 |
# Add chunks and similarities to the all_chunks list
|
147 |
+
all_chunks.extend(list(zip(doc["chunks"], similarities)))
|
148 |
|
149 |
# Sort all chunks by similarity
|
150 |
+
all_chunks.sort(key=lambda x: x[1], reverse=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
|
152 |
+
return "CONTEXT:\n\n" + "\n\n".join(chunk for chunk, _ in all_chunks[:k])
|
153 |
|
154 |
|
155 |
+
def init():
|
156 |
+
"""Init function
|
157 |
|
158 |
+
It will load or calculate the embeddings
|
159 |
+
"""
|
160 |
+
global docs # pylint: disable=W0603
|
161 |
+
embeddings_file = Path("embeddings.pickle")
|
162 |
+
if embeddings_file.exists():
|
163 |
+
with open(embeddings_file, "rb") as embeddings_pickle:
|
164 |
+
docs = pickle.load(embeddings_pickle)
|
165 |
+
else:
|
166 |
+
for filename in glob.glob("sources/*"):
|
167 |
+
converted_doc = convert(filename)
|
168 |
+
chunks = generate_chunks(converted_doc, chunk_size)
|
169 |
+
embeddings = model.encode(chunks)
|
170 |
+
docs[filename] = {
|
171 |
+
"chunks": chunks,
|
172 |
+
"embeddings": embeddings,
|
173 |
+
}
|
174 |
+
with open(embeddings_file, "wb") as pickle_file:
|
175 |
+
pickle.dump(docs, pickle_file)
|
176 |
|
|
|
|
|
177 |
|
178 |
+
init()
|
|
|
|
|
|
|
179 |
|
180 |
|
181 |
gr.Interface(
|
182 |
predict,
|
183 |
inputs=[
|
184 |
gr.Textbox(label="Query asked about the documents"),
|
185 |
+
gr.Number(label="Number of relevant sources returned (k)", value=default_k),
|
186 |
],
|
187 |
+
outputs=[gr.Text(label="Relevant chunks")],
|
188 |
+
title="ContextQA tool - El Salvador",
|
189 |
+
description="Forked and customized RAG tool working with law documents from El Salvador",
|
190 |
+
).launch()
|
sources/Constitucion de la Republica.pdf
ADDED
Binary file (321 kB). View file
|
|
sources/GeForce-RTX-4090-GAMING-X-TRIO-24G.pdf
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:96cb2dd9797ac7dca9df67a7fd499bb45eecb15219c617bb2d73a3eec19649e6
|
3 |
-
size 1519838
|
|
|
|
|
|
|
|
sources/Reglamento General de Transito y Seguridad Vial correcto.pdf
ADDED
Binary file (387 kB). View file
|
|
sources/add_your_files_here
DELETED
File without changes
|
sources/march19newarmouriessamplemenu.pdf
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:886365911dc9cea7d983108b532729e1a895388b27c096bc6554535073ca351a
|
3 |
-
size 52843
|
|
|
|
|
|
|
|