Update app.py
Browse files
app.py
CHANGED
@@ -1,360 +1,360 @@
|
|
1 |
import torch
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
try:
|
34 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
35 |
-
model_id = "Intel/dpt-large"
|
36 |
-
|
37 |
-
print(f"Loading depth model on {device}...")
|
38 |
-
DEPTH_MODEL = DPTForDepthEstimation.from_pretrained(model_id).to(device)
|
39 |
-
DEPTH_PROCESSOR = DPTImageProcessor.from_pretrained(model_id)
|
40 |
-
print("Depth model loaded successfully")
|
41 |
-
except Exception as e:
|
42 |
-
print(f"Error loading depth model: {e}")
|
43 |
-
raise
|
44 |
-
|
45 |
-
return DEPTH_MODEL, DEPTH_PROCESSOR
|
46 |
-
|
47 |
-
@staticmethod
|
48 |
-
def generate_depth_map(image):
|
49 |
-
"""Generate a depth map from an input image"""
|
50 |
-
model, processor = DepthModelManager.get_depth_model()
|
51 |
-
device = next(model.parameters()).device
|
52 |
-
|
53 |
-
# Preprocess the image
|
54 |
-
image_size = image.size
|
55 |
-
inputs = processor(images=image, return_tensors="pt").to(device)
|
56 |
-
|
57 |
-
# Get depth prediction
|
58 |
-
with torch.no_grad():
|
59 |
-
outputs = model(**inputs)
|
60 |
-
predicted_depth = outputs.predicted_depth
|
61 |
-
|
62 |
-
# Postprocess the depth map
|
63 |
-
prediction = torch.nn.functional.interpolate(
|
64 |
-
predicted_depth.unsqueeze(1),
|
65 |
-
size=image_size[::-1],
|
66 |
-
mode="bicubic",
|
67 |
-
align_corners=False,
|
68 |
-
).squeeze()
|
69 |
-
|
70 |
-
# Normalize the depth map
|
71 |
-
depth_map = (prediction - prediction.min()) / (prediction.max() - prediction.min())
|
72 |
-
depth_map = ToPILImage()(depth_map.cpu())
|
73 |
-
|
74 |
-
return depth_map
|
75 |
-
|
76 |
-
@spaces.GPU
|
77 |
-
def generate_parallax_video(image, depth_map=None, use_auto_depth=False, animation_style="horizontal",
|
78 |
-
amplitude=2.0, k=5.0, fps=30, duration=5.0, smooth_edges=True,
|
79 |
-
invert_depth=False, progress=gr.Progress()):
|
80 |
-
"""
|
81 |
-
Generate a 3D parallax video from an image and depth map with the selected animation style.
|
82 |
-
|
83 |
-
Args:
|
84 |
-
image (PIL.Image): Input RGB image.
|
85 |
-
depth_map (PIL.Image, optional): Grayscale depth map (white = closer, black = farther).
|
86 |
-
use_auto_depth (bool): Whether to auto-generate the depth map.
|
87 |
-
animation_style (str): Animation type ("horizontal", "vertical", "circle", "perspective").
|
88 |
-
amplitude (float): Intensity of camera movement.
|
89 |
-
k (float): Depth displacement scale factor.
|
90 |
-
fps (int): Frames per second.
|
91 |
-
duration (float): Video duration in seconds.
|
92 |
-
smooth_edges (bool): Whether to apply edge smoothing to reduce artifacts.
|
93 |
-
invert_depth (bool): Whether to invert the depth map.
|
94 |
-
progress (gr.Progress): Gradio progress indicator.
|
95 |
-
|
96 |
-
Returns:
|
97 |
-
str: Path to the generated video file or error message.
|
98 |
-
"""
|
99 |
try:
|
100 |
-
if image is None:
|
101 |
-
return "Error: Please upload an input image"
|
102 |
-
|
103 |
-
# Generate depth map if auto-mode is selected
|
104 |
-
if use_auto_depth or depth_map is None:
|
105 |
-
progress(0.1, desc="Generating depth map...")
|
106 |
-
depth_map = DepthModelManager.generate_depth_map(image)
|
107 |
-
|
108 |
-
# Validate input dimensions
|
109 |
-
original_size = image.size
|
110 |
-
if depth_map.size != image.size:
|
111 |
-
depth_map = depth_map.resize(image.size, Image.BICUBIC)
|
112 |
-
|
113 |
-
# Handle depth map inversion if requested
|
114 |
-
if invert_depth:
|
115 |
-
depth_map = Image.fromarray(255 - np.array(depth_map))
|
116 |
-
|
117 |
-
# Convert to device tensors
|
118 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
image_tensor = ToTensor()(image).unsqueeze(0).to(device, dtype=torch.float16) # (1, 3, H, W)
|
127 |
-
depth_tensor = ToTensor()(depth_map.convert('L')).to(device, dtype=torch.float16) # (1, H, W)
|
128 |
-
|
129 |
-
# Normalize depth (min-max)
|
130 |
-
depth_min = depth_tensor.min()
|
131 |
-
depth_max = depth_tensor.max()
|
132 |
-
if depth_max - depth_min < 1e-5: # Handle flat depth maps
|
133 |
-
depth_tensor = torch.ones_like(depth_tensor) * 0.5
|
134 |
-
else:
|
135 |
-
depth_tensor = (depth_tensor - depth_min) / (depth_max - depth_min + 1e-6)
|
136 |
-
|
137 |
-
depth_tensor = depth_tensor.squeeze(0) # (H, W)
|
138 |
-
|
139 |
-
# Apply optional mild gaussian blur to depth for smoother transitions
|
140 |
-
if smooth_edges:
|
141 |
-
kernel_size = max(3, min(int(min(image.size) / 100) * 2 + 1, 11))
|
142 |
-
depth_np = depth_tensor.cpu().numpy()
|
143 |
-
depth_np = cv2.GaussianBlur(depth_np, (kernel_size, kernel_size), 0)
|
144 |
-
depth_tensor = torch.tensor(depth_np, device=device, dtype=torch.float16)
|
145 |
-
|
146 |
-
# Extract dimensions
|
147 |
-
H, W = image_tensor.shape[2], image_tensor.shape[3]
|
148 |
-
|
149 |
-
# Create coordinate grid for warping
|
150 |
-
x = torch.arange(0, W, device=device, dtype=torch.float16)
|
151 |
-
y = torch.arange(0, H, device=device, dtype=torch.float16)
|
152 |
-
xx, yy = torch.meshgrid(x, y, indexing='xy')
|
153 |
-
pixel_grid = torch.stack((xx, yy), dim=-1) # (H, W, 2)
|
154 |
-
|
155 |
-
# Calculate number of frames
|
156 |
-
num_frames = int(fps * duration)
|
157 |
-
|
158 |
-
# Prepare video writer
|
159 |
-
output_path = os.path.join(tempfile.gettempdir(), "parallax_video.mp4")
|
160 |
-
writer = imageio.get_writer(output_path, fps=fps, codec='libx264', quality=8,
|
161 |
-
pixelformat='yuv420p', bitrate='8000k')
|
162 |
-
|
163 |
-
# Define easing function for smoother animation
|
164 |
-
def ease_in_out(t):
|
165 |
-
return 0.5 * (1 - np.cos(np.pi * t))
|
166 |
-
|
167 |
-
# Animation and rendering
|
168 |
-
progress(0.3, desc="Generating frames...")
|
169 |
-
frame_count = 0
|
170 |
-
|
171 |
-
for frame in range(num_frames):
|
172 |
-
# Report progress
|
173 |
-
frame_progress = 0.3 + (0.65 * (frame / num_frames))
|
174 |
-
progress(frame_progress, desc=f"Rendering frame {frame+1}/{num_frames}")
|
175 |
-
|
176 |
-
# Normalized time with easing
|
177 |
-
t = frame / (num_frames - 1) # [0, 1]
|
178 |
-
t_eased = ease_in_out(t)
|
179 |
-
|
180 |
-
# Calculate camera position based on animation style
|
181 |
-
if animation_style == "horizontal":
|
182 |
-
camera_x = amplitude * np.sin(2 * np.pi * t_eased)
|
183 |
-
camera_y = 0
|
184 |
-
displacement_scale = 1
|
185 |
-
elif animation_style == "vertical":
|
186 |
-
camera_x = 0
|
187 |
-
camera_y = amplitude * np.sin(2 * np.pi * t_eased)
|
188 |
-
displacement_scale = 1
|
189 |
-
elif animation_style == "circle":
|
190 |
-
camera_x = amplitude * np.sin(2 * np.pi * t_eased)
|
191 |
-
camera_y = amplitude * np.cos(2 * np.pi * t_eased)
|
192 |
-
displacement_scale = 1
|
193 |
-
elif animation_style == "perspective":
|
194 |
-
# Better perspective effect
|
195 |
-
zoom_factor = 0.1 * np.sin(2 * np.pi * t_eased) + 1.0 # [0.9, 1.1]
|
196 |
-
camera_x = amplitude * 0.5 * np.sin(2 * np.pi * t_eased)
|
197 |
-
camera_y = amplitude * 0.3 * np.sin(2 * np.pi * t_eased)
|
198 |
-
displacement_scale = zoom_factor
|
199 |
-
else:
|
200 |
-
camera_x = 0
|
201 |
-
camera_y = 0
|
202 |
-
displacement_scale = 1
|
203 |
-
|
204 |
-
# Compute displacements with a more natural depth response
|
205 |
-
displacement_x = displacement_scale * k * camera_x * depth_tensor
|
206 |
-
displacement_y = displacement_scale * k * camera_y * depth_tensor
|
207 |
-
|
208 |
-
# Calculate source coordinates for warping
|
209 |
-
source_pixel_x = pixel_grid[:, :, 0] + displacement_x
|
210 |
-
source_pixel_y = pixel_grid[:, :, 1] + displacement_y
|
211 |
-
|
212 |
-
# Normalize coordinates to [-1, 1] for grid_sample
|
213 |
-
grid_x = 2 * source_pixel_x / (W - 1) - 1
|
214 |
-
grid_y = 2 * source_pixel_y / (H - 1) - 1
|
215 |
-
grid = torch.stack((grid_x, grid_y), dim=-1).unsqueeze(0) # (1, H, W, 2)
|
216 |
-
|
217 |
-
# Warp the image using grid sampling with improved border handling
|
218 |
-
warped = torch.nn.functional.grid_sample(
|
219 |
-
image_tensor,
|
220 |
-
grid,
|
221 |
-
align_corners=True,
|
222 |
-
mode='bilinear',
|
223 |
-
padding_mode='reflection' # Using reflection padding for smoother edges
|
224 |
-
)
|
225 |
-
|
226 |
-
# Convert warped tensor to numpy image
|
227 |
-
warped_np = warped.squeeze(0).permute(1, 2, 0).cpu().numpy()
|
228 |
-
# Convert to 8-bit for video
|
229 |
-
frame_img = (warped_np * 255).clip(0, 255).astype(np.uint8)
|
230 |
-
|
231 |
-
# Apply a mild vignette effect to hide edge artifacts
|
232 |
-
if smooth_edges:
|
233 |
-
h, w = frame_img.shape[:2]
|
234 |
-
center_x, center_y = w // 2, h // 2
|
235 |
-
max_dist = np.sqrt(center_x**2 + center_y**2)
|
236 |
-
y, x = np.ogrid[:h, :w]
|
237 |
-
dist = np.sqrt((x - center_x)**2 + (y - center_y)**2)
|
238 |
-
vignette = np.clip(1.0 - dist / max_dist * 0.15, 0.95, 1.0)
|
239 |
-
frame_img = (frame_img * vignette[:, :, np.newaxis]).astype(np.uint8)
|
240 |
-
|
241 |
-
# Add frame to video
|
242 |
-
writer.append_data(frame_img)
|
243 |
-
frame_count += 1
|
244 |
-
|
245 |
-
# Prevent memory issues by cleaning up tensors
|
246 |
-
del grid, warped
|
247 |
-
if frame % 10 == 0 and torch.cuda.is_available():
|
248 |
-
torch.cuda.empty_cache()
|
249 |
-
|
250 |
-
# Ensure all frames are written and close the writer
|
251 |
-
writer.close()
|
252 |
-
|
253 |
-
# Clean up tensors
|
254 |
-
del image_tensor, depth_tensor, pixel_grid
|
255 |
-
if torch.cuda.is_available():
|
256 |
-
torch.cuda.empty_cache()
|
257 |
-
gc.collect()
|
258 |
-
|
259 |
-
progress(1.0, desc="Processing complete")
|
260 |
-
|
261 |
-
if frame_count > 0:
|
262 |
-
return output_path
|
263 |
-
else:
|
264 |
-
return "Error: No frames were generated. Please adjust your parameters."
|
265 |
-
|
266 |
except Exception as e:
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
347 |
)
|
348 |
-
|
349 |
-
#
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
357 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
358 |
|
359 |
-
|
360 |
-
|
|
|
1 |
import torch
|
2 |
+
import gradio as gr
|
3 |
+
import imageio
|
4 |
+
import numpy as np
|
5 |
+
import cv2
|
6 |
+
from PIL import Image
|
7 |
+
from torchvision.transforms import ToTensor, Resize, Compose, ToPILImage
|
8 |
+
import spaces
|
9 |
+
import tempfile
|
10 |
+
import os
|
11 |
+
import gc
|
12 |
+
import warnings
|
13 |
+
import traceback
|
14 |
+
from huggingface_hub import hf_hub_download
|
15 |
+
from transformers import pipeline
|
16 |
+
from diffusers import DPTForDepthEstimation, DPTImageProcessor
|
17 |
+
from accelerate import Accelerator
|
18 |
+
|
19 |
+
# Suppress warnings
|
20 |
+
warnings.filterwarnings("ignore")
|
21 |
+
|
22 |
+
# Global model cache
|
23 |
+
DEPTH_MODEL = None
|
24 |
+
DEPTH_PROCESSOR = None
|
25 |
+
|
26 |
+
class DepthModelManager:
|
27 |
+
@staticmethod
|
28 |
+
def get_depth_model():
|
29 |
+
"""Lazy-loads the depth estimation model on first use"""
|
30 |
+
global DEPTH_MODEL, DEPTH_PROCESSOR
|
31 |
+
|
32 |
+
if DEPTH_MODEL is None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
35 |
+
model_id = "Intel/dpt-large"
|
36 |
+
|
37 |
+
print(f"Loading depth model on {device}...")
|
38 |
+
DEPTH_MODEL = DPTForDepthEstimation.from_pretrained(model_id).to(device)
|
39 |
+
DEPTH_PROCESSOR = DPTImageProcessor.from_pretrained(model_id)
|
40 |
+
print("Depth model loaded successfully")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
except Exception as e:
|
42 |
+
print(f"Error loading depth model: {e}")
|
43 |
+
raise
|
44 |
+
|
45 |
+
return DEPTH_MODEL, DEPTH_PROCESSOR
|
46 |
+
|
47 |
+
@staticmethod
|
48 |
+
def generate_depth_map(image):
|
49 |
+
"""Generate a depth map from an input image"""
|
50 |
+
model, processor = DepthModelManager.get_depth_model()
|
51 |
+
device = next(model.parameters()).device
|
52 |
+
|
53 |
+
# Preprocess the image
|
54 |
+
image_size = image.size
|
55 |
+
inputs = processor(images=image, return_tensors="pt").to(device)
|
56 |
+
|
57 |
+
# Get depth prediction
|
58 |
+
with torch.no_grad():
|
59 |
+
outputs = model(**inputs)
|
60 |
+
predicted_depth = outputs.predicted_depth
|
61 |
+
|
62 |
+
# Postprocess the depth map
|
63 |
+
prediction = torch.nn.functional.interpolate(
|
64 |
+
predicted_depth.unsqueeze(1),
|
65 |
+
size=image_size[::-1],
|
66 |
+
mode="bicubic",
|
67 |
+
align_corners=False,
|
68 |
+
).squeeze()
|
69 |
+
|
70 |
+
# Normalize the depth map
|
71 |
+
depth_map = (prediction - prediction.min()) / (prediction.max() - prediction.min())
|
72 |
+
depth_map = ToPILImage()(depth_map.cpu())
|
73 |
+
|
74 |
+
return depth_map
|
75 |
+
|
76 |
+
@spaces.GPU
|
77 |
+
def generate_parallax_video(image, depth_map=None, use_auto_depth=False, animation_style="horizontal",
|
78 |
+
amplitude=2.0, k=5.0, fps=30, duration=5.0, smooth_edges=True,
|
79 |
+
invert_depth=False, progress=gr.Progress()):
|
80 |
+
"""
|
81 |
+
Generate a 3D parallax video from an image and depth map with the selected animation style.
|
82 |
+
|
83 |
+
Args:
|
84 |
+
image (PIL.Image): Input RGB image.
|
85 |
+
depth_map (PIL.Image, optional): Grayscale depth map (white = closer, black = farther).
|
86 |
+
use_auto_depth (bool): Whether to auto-generate the depth map.
|
87 |
+
animation_style (str): Animation type ("horizontal", "vertical", "circle", "perspective").
|
88 |
+
amplitude (float): Intensity of camera movement.
|
89 |
+
k (float): Depth displacement scale factor.
|
90 |
+
fps (int): Frames per second.
|
91 |
+
duration (float): Video duration in seconds.
|
92 |
+
smooth_edges (bool): Whether to apply edge smoothing to reduce artifacts.
|
93 |
+
invert_depth (bool): Whether to invert the depth map.
|
94 |
+
progress (gr.Progress): Gradio progress indicator.
|
95 |
+
|
96 |
+
Returns:
|
97 |
+
str: Path to the generated video file or error message.
|
98 |
+
"""
|
99 |
+
try:
|
100 |
+
if image is None:
|
101 |
+
return "Error: Please upload an input image"
|
102 |
+
|
103 |
+
# Generate depth map if auto-mode is selected
|
104 |
+
if use_auto_depth or depth_map is None:
|
105 |
+
progress(0.1, desc="Generating depth map...")
|
106 |
+
depth_map = DepthModelManager.generate_depth_map(image)
|
107 |
+
|
108 |
+
# Validate input dimensions
|
109 |
+
original_size = image.size
|
110 |
+
if depth_map.size != image.size:
|
111 |
+
depth_map = depth_map.resize(image.size, Image.BICUBIC)
|
112 |
+
|
113 |
+
# Handle depth map inversion if requested
|
114 |
+
if invert_depth:
|
115 |
+
depth_map = Image.fromarray(255 - np.array(depth_map))
|
116 |
+
|
117 |
+
# Convert to device tensors
|
118 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
119 |
+
progress(0.2, desc="Processing inputs...")
|
120 |
+
|
121 |
+
# Optimize for memory - use 16-bit precision
|
122 |
+
torch.set_grad_enabled(False)
|
123 |
+
if torch.cuda.is_available():
|
124 |
+
torch.cuda.empty_cache()
|
125 |
+
|
126 |
+
image_tensor = ToTensor()(image).unsqueeze(0).to(device, dtype=torch.float16) # (1, 3, H, W)
|
127 |
+
depth_tensor = ToTensor()(depth_map.convert('L')).to(device, dtype=torch.float16) # (1, H, W)
|
128 |
+
|
129 |
+
# Normalize depth (min-max)
|
130 |
+
depth_min = depth_tensor.min()
|
131 |
+
depth_max = depth_tensor.max()
|
132 |
+
if depth_max - depth_min < 1e-5: # Handle flat depth maps
|
133 |
+
depth_tensor = torch.ones_like(depth_tensor) * 0.5
|
134 |
+
else:
|
135 |
+
depth_tensor = (depth_tensor - depth_min) / (depth_max - depth_min + 1e-6)
|
136 |
+
|
137 |
+
depth_tensor = depth_tensor.squeeze(0) # (H, W)
|
138 |
+
|
139 |
+
# Apply optional mild gaussian blur to depth for smoother transitions
|
140 |
+
if smooth_edges:
|
141 |
+
kernel_size = max(3, min(int(min(image.size) / 100) * 2 + 1, 11))
|
142 |
+
depth_np = depth_tensor.cpu().numpy()
|
143 |
+
depth_np = cv2.GaussianBlur(depth_np, (kernel_size, kernel_size), 0)
|
144 |
+
depth_tensor = torch.tensor(depth_np, device=device, dtype=torch.float16)
|
145 |
+
|
146 |
+
# Extract dimensions
|
147 |
+
H, W = image_tensor.shape[2], image_tensor.shape[3]
|
148 |
+
|
149 |
+
# Create coordinate grid for warping
|
150 |
+
x = torch.arange(0, W, device=device, dtype=torch.float16)
|
151 |
+
y = torch.arange(0, H, device=device, dtype=torch.float16)
|
152 |
+
xx, yy = torch.meshgrid(x, y, indexing='xy')
|
153 |
+
pixel_grid = torch.stack((xx, yy), dim=-1) # (H, W, 2)
|
154 |
+
|
155 |
+
# Calculate number of frames
|
156 |
+
num_frames = int(fps * duration)
|
157 |
+
|
158 |
+
# Prepare video writer
|
159 |
+
output_path = os.path.join(tempfile.gettempdir(), "parallax_video.mp4")
|
160 |
+
writer = imageio.get_writer(output_path, fps=fps, codec='libx264', quality=8,
|
161 |
+
pixelformat='yuv420p', bitrate='8000k')
|
162 |
+
|
163 |
+
# Define easing function for smoother animation
|
164 |
+
def ease_in_out(t):
|
165 |
+
return 0.5 * (1 - np.cos(np.pi * t))
|
166 |
+
|
167 |
+
# Animation and rendering
|
168 |
+
progress(0.3, desc="Generating frames...")
|
169 |
+
frame_count = 0
|
170 |
+
|
171 |
+
for frame in range(num_frames):
|
172 |
+
# Report progress
|
173 |
+
frame_progress = 0.3 + (0.65 * (frame / num_frames))
|
174 |
+
progress(frame_progress, desc=f"Rendering frame {frame+1}/{num_frames}")
|
175 |
+
|
176 |
+
# Normalized time with easing
|
177 |
+
t = frame / (num_frames - 1) # [0, 1]
|
178 |
+
t_eased = ease_in_out(t)
|
179 |
+
|
180 |
+
# Calculate camera position based on animation style
|
181 |
+
if animation_style == "horizontal":
|
182 |
+
camera_x = amplitude * np.sin(2 * np.pi * t_eased)
|
183 |
+
camera_y = 0
|
184 |
+
displacement_scale = 1
|
185 |
+
elif animation_style == "vertical":
|
186 |
+
camera_x = 0
|
187 |
+
camera_y = amplitude * np.sin(2 * np.pi * t_eased)
|
188 |
+
displacement_scale = 1
|
189 |
+
elif animation_style == "circle":
|
190 |
+
camera_x = amplitude * np.sin(2 * np.pi * t_eased)
|
191 |
+
camera_y = amplitude * np.cos(2 * np.pi * t_eased)
|
192 |
+
displacement_scale = 1
|
193 |
+
elif animation_style == "perspective":
|
194 |
+
# Better perspective effect
|
195 |
+
zoom_factor = 0.1 * np.sin(2 * np.pi * t_eased) + 1.0 # [0.9, 1.1]
|
196 |
+
camera_x = amplitude * 0.5 * np.sin(2 * np.pi * t_eased)
|
197 |
+
camera_y = amplitude * 0.3 * np.sin(2 * np.pi * t_eased)
|
198 |
+
displacement_scale = zoom_factor
|
199 |
+
else:
|
200 |
+
camera_x = 0
|
201 |
+
camera_y = 0
|
202 |
+
displacement_scale = 1
|
203 |
+
|
204 |
+
# Compute displacements with a more natural depth response
|
205 |
+
displacement_x = displacement_scale * k * camera_x * depth_tensor
|
206 |
+
displacement_y = displacement_scale * k * camera_y * depth_tensor
|
207 |
+
|
208 |
+
# Calculate source coordinates for warping
|
209 |
+
source_pixel_x = pixel_grid[:, :, 0] + displacement_x
|
210 |
+
source_pixel_y = pixel_grid[:, :, 1] + displacement_y
|
211 |
+
|
212 |
+
# Normalize coordinates to [-1, 1] for grid_sample
|
213 |
+
grid_x = 2 * source_pixel_x / (W - 1) - 1
|
214 |
+
grid_y = 2 * source_pixel_y / (H - 1) - 1
|
215 |
+
grid = torch.stack((grid_x, grid_y), dim=-1).unsqueeze(0) # (1, H, W, 2)
|
216 |
+
|
217 |
+
# Warp the image using grid sampling with improved border handling
|
218 |
+
warped = torch.nn.functional.grid_sample(
|
219 |
+
image_tensor,
|
220 |
+
grid,
|
221 |
+
align_corners=True,
|
222 |
+
mode='bilinear',
|
223 |
+
padding_mode='reflection' # Using reflection padding for smoother edges
|
224 |
)
|
225 |
+
|
226 |
+
# Convert warped tensor to numpy image
|
227 |
+
warped_np = warped.squeeze(0).permute(1, 2, 0).cpu().numpy()
|
228 |
+
# Convert to 8-bit for video
|
229 |
+
frame_img = (warped_np * 255).clip(0, 255).astype(np.uint8)
|
230 |
+
|
231 |
+
# Apply a mild vignette effect to hide edge artifacts
|
232 |
+
if smooth_edges:
|
233 |
+
h, w = frame_img.shape[:2]
|
234 |
+
center_x, center_y = w // 2, h // 2
|
235 |
+
max_dist = np.sqrt(center_x**2 + center_y**2)
|
236 |
+
y, x = np.ogrid[:h, :w]
|
237 |
+
dist = np.sqrt((x - center_x)**2 + (y - center_y)**2)
|
238 |
+
vignette = np.clip(1.0 - dist / max_dist * 0.15, 0.95, 1.0)
|
239 |
+
frame_img = (frame_img * vignette[:, :, np.newaxis]).astype(np.uint8)
|
240 |
+
|
241 |
+
# Add frame to video
|
242 |
+
writer.append_data(frame_img)
|
243 |
+
frame_count += 1
|
244 |
+
|
245 |
+
# Prevent memory issues by cleaning up tensors
|
246 |
+
del grid, warped
|
247 |
+
if frame % 10 == 0 and torch.cuda.is_available():
|
248 |
+
torch.cuda.empty_cache()
|
249 |
+
|
250 |
+
# Ensure all frames are written and close the writer
|
251 |
+
writer.close()
|
252 |
+
|
253 |
+
# Clean up tensors
|
254 |
+
del image_tensor, depth_tensor, pixel_grid
|
255 |
+
if torch.cuda.is_available():
|
256 |
+
torch.cuda.empty_cache()
|
257 |
+
gc.collect()
|
258 |
+
|
259 |
+
progress(1.0, desc="Processing complete")
|
260 |
+
|
261 |
+
if frame_count > 0:
|
262 |
+
return output_path
|
263 |
+
else:
|
264 |
+
return "Error: No frames were generated. Please adjust your parameters."
|
265 |
+
|
266 |
+
except Exception as e:
|
267 |
+
# Clean up any resources
|
268 |
+
if torch.cuda.is_available():
|
269 |
+
torch.cuda.empty_cache()
|
270 |
+
|
271 |
+
error_msg = f"Error: {str(e)}\n{traceback.format_exc()}"
|
272 |
+
print(error_msg)
|
273 |
+
return f"An error occurred: {str(e)}"
|
274 |
+
|
275 |
+
# Define Gradio interface
|
276 |
+
with gr.Blocks(title="3D Parallax Video Generator", theme=gr.themes.Soft()) as demo:
|
277 |
+
gr.Markdown("# Advanced 3D Parallax Video Generator")
|
278 |
+
|
279 |
+
with gr.Accordion("About this app", open=False):
|
280 |
+
gr.Markdown("""
|
281 |
+
This application converts 2D images into 3D parallax motion videos. Upload an image and
|
282 |
+
either provide a depth map or use our built-in depth estimation model to automatically
|
283 |
+
generate one. Customize the animation style and parameters to create your desired effect.
|
284 |
+
|
285 |
+
### Tips for best results:
|
286 |
+
- Start with small amplitude and k values (2-5) to avoid extreme distortions
|
287 |
+
- The depth map should have white areas for objects closer to camera, black for farther objects
|
288 |
+
- For automatic depth generation, images with clear foreground/background separation work best
|
289 |
+
- If you see artifacts at the edges, enable the "Smooth edges" option
|
290 |
+
""")
|
291 |
+
|
292 |
+
# Input section
|
293 |
+
with gr.Row():
|
294 |
+
with gr.Column():
|
295 |
+
image_input = gr.Image(label="Upload Image", type="pil")
|
296 |
+
|
297 |
+
with gr.Row():
|
298 |
+
use_auto_depth = gr.Checkbox(label="Auto-generate depth map", value=True)
|
299 |
+
invert_depth = gr.Checkbox(label="Invert depth map", value=False)
|
300 |
+
|
301 |
+
depth_input = gr.Image(label="Upload Depth Map (optional)", type="pil")
|
302 |
+
|
303 |
+
# Parameter controls
|
304 |
+
with gr.Row():
|
305 |
+
with gr.Column():
|
306 |
+
animation_style = gr.Dropdown(
|
307 |
+
choices=["horizontal", "vertical", "circle", "perspective"],
|
308 |
+
label="Animation Style",
|
309 |
+
value="horizontal"
|
310 |
)
|
311 |
+
amplitude_slider = gr.Slider(0.5, 10, value=2, label="Movement Amplitude", step=0.1)
|
312 |
+
k_slider = gr.Slider(1, 20, value=5, label="Depth Effect Strength", step=0.1)
|
313 |
+
|
314 |
+
with gr.Column():
|
315 |
+
fps_slider = gr.Slider(15, 60, value=30, label="Frames Per Second", step=1)
|
316 |
+
duration_slider = gr.Slider(1, 10, value=3, label="Duration (seconds)", step=0.1)
|
317 |
+
smooth_edges = gr.Checkbox(label="Smooth edges (reduces artifacts)", value=True)
|
318 |
+
|
319 |
+
# Output and interaction
|
320 |
+
with gr.Row():
|
321 |
+
generate_btn = gr.Button("Generate Video", variant="primary")
|
322 |
+
|
323 |
+
video_output = gr.Video(label="Parallax Video")
|
324 |
+
|
325 |
+
# Handle automatic depth map generation
|
326 |
+
def update_depth_visibility(auto_generate):
|
327 |
+
return gr.update(visible=not auto_generate)
|
328 |
+
|
329 |
+
use_auto_depth.change(update_depth_visibility, inputs=[use_auto_depth], outputs=[depth_input])
|
330 |
+
|
331 |
+
# Connect button to function
|
332 |
+
generate_btn.click(
|
333 |
+
fn=generate_parallax_video,
|
334 |
+
inputs=[
|
335 |
+
image_input,
|
336 |
+
depth_input,
|
337 |
+
use_auto_depth,
|
338 |
+
animation_style,
|
339 |
+
amplitude_slider,
|
340 |
+
k_slider,
|
341 |
+
fps_slider,
|
342 |
+
duration_slider,
|
343 |
+
smooth_edges,
|
344 |
+
invert_depth
|
345 |
+
],
|
346 |
+
outputs=video_output
|
347 |
+
)
|
348 |
+
|
349 |
+
# Add examples
|
350 |
+
gr.Examples(
|
351 |
+
examples=[
|
352 |
+
["https://huggingface.co/spaces/stabilityai/stable-diffusion/resolve/main/images/lincoln.jpg"],
|
353 |
+
["https://images.unsplash.com/photo-1546614042-7df3c24c9e5d"],
|
354 |
+
["https://images.unsplash.com/photo-1563473213013-de2a0133c100"],
|
355 |
+
],
|
356 |
+
inputs=[image_input],
|
357 |
+
)
|
358 |
|
359 |
+
# Launch the application
|
360 |
+
demo.launch()
|