Spaces:
Sleeping
Sleeping
Commit
·
4e2ea8a
1
Parent(s):
0de8536
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
import tensorflow as tf
|
3 |
-
import numpy as np
|
4 |
import gdown
|
5 |
from PIL import Image
|
6 |
|
@@ -36,41 +35,22 @@ model = tf.keras.models.load_model(model_file)
|
|
36 |
def predict_class(image):
|
37 |
img = tf.cast(image, tf.float32)
|
38 |
img = tf.image.resize(img, [input_shape[0], input_shape[1]])
|
39 |
-
img =
|
40 |
prediction = model.predict(img)
|
41 |
-
|
|
|
|
|
42 |
|
43 |
# UI Design
|
44 |
def classify_image(image):
|
45 |
-
|
46 |
-
|
47 |
-
"plane",
|
48 |
-
"car",
|
49 |
-
"bird",
|
50 |
-
"cat",
|
51 |
-
"deer",
|
52 |
-
"dog",
|
53 |
-
"frog",
|
54 |
-
"horse",
|
55 |
-
"ship",
|
56 |
-
"truck",
|
57 |
-
]
|
58 |
-
|
59 |
-
probabilities = tf.nn.softmax(pred)
|
60 |
-
top_indices = tf.argsort(probabilities, direction='DESCENDING')
|
61 |
-
top_classes = [class_names[idx] for idx in top_indices]
|
62 |
-
top_probs = [probabilities[idx] for idx in top_indices]
|
63 |
-
|
64 |
-
output = "<h3>Top 3 Predictions:</h3>"
|
65 |
-
for i in range(3):
|
66 |
-
output += f"<p>{top_classes[i]}: {top_probs[i]*100:.2f}%</p>"
|
67 |
-
|
68 |
return output
|
69 |
|
70 |
inputs = gr.inputs.Image(label="Upload an image")
|
71 |
outputs = gr.outputs.HTML()
|
72 |
|
73 |
title = "<h1 style='text-align: center;'>Image Classifier</h1>"
|
74 |
-
description = "Upload an image and get the
|
75 |
|
76 |
-
gr.Interface(fn=classify_image, inputs=inputs, outputs=outputs, title=title, description=description).launch()
|
|
|
1 |
import gradio as gr
|
2 |
import tensorflow as tf
|
|
|
3 |
import gdown
|
4 |
from PIL import Image
|
5 |
|
|
|
35 |
def predict_class(image):
|
36 |
img = tf.cast(image, tf.float32)
|
37 |
img = tf.image.resize(img, [input_shape[0], input_shape[1]])
|
38 |
+
img = tf.expand_dims(img, axis=0)
|
39 |
prediction = model.predict(img)
|
40 |
+
class_index = tf.argmax(prediction[0]).numpy()
|
41 |
+
predicted_class = labels[class_index]
|
42 |
+
return predicted_class
|
43 |
|
44 |
# UI Design
|
45 |
def classify_image(image):
|
46 |
+
predicted_class = predict_class(image)
|
47 |
+
output = f"<h2>Predicted Class:</h2><p>{predicted_class}</p>"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
return output
|
49 |
|
50 |
inputs = gr.inputs.Image(label="Upload an image")
|
51 |
outputs = gr.outputs.HTML()
|
52 |
|
53 |
title = "<h1 style='text-align: center;'>Image Classifier</h1>"
|
54 |
+
description = "Upload an image and get the predicted class."
|
55 |
|
56 |
+
gr.Interface(fn=classify_image, inputs=inputs, outputs=outputs, title=title, description=description).launch()
|