File size: 3,499 Bytes
daf0288
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
from typing import Any
from torch.utils.data import DataLoader, Dataset, Sampler
from functools import partial
import tokenizers as tk
import torch
from torch.utils.data import default_collate
from ..utils.mask_generator import MaskGenerator
from ..utils import (
    prepare_html_seq,
    prepare_cell_seq,
    prepare_bbox_seq,
)


class Collator:
    def __init__(
        self,
        vocab: tk.Tokenizer,
        max_seq_len: int,
        label_type: str,
    ) -> None:
        self.vocab = vocab
        self.vocab.enable_truncation(max_seq_len)
        self.label_type = label_type

    def __call__(self, batch) -> Any:
        return self._collate_batch(batch, self.vocab, self.label_type)

    def _collate_batch(
        self,
        batch: list[dict],
        vocab: tk.Tokenizer,
        label_type: str,
    ):
        if "cell" in label_type:
            image_list = [j for i in batch for j in i[0]]
        else:
            image_list = [i["image"] for i in batch]
        image_list = default_collate(image_list)

        if "cell" in label_type:
            filename = [(j["filename"], j["bbox_id"]) for i in batch for j in i[1]]
        else:
            filename = [i["filename"] for i in batch]
        label = dict(filename=filename)

        if "html" in label_type:
            html_list = ["".join(prepare_html_seq(i["html"])) for i in batch]
            label["html"] = vocab.encode_batch(html_list)

        if "cell" in label_type:
            cell_list = [
                " ".join(prepare_cell_seq(j["cell"])) for i in batch for j in i[1]
            ]
            label["cell"] = vocab.encode_batch(cell_list)

        if "bbox" in label_type:
            bbox_list = [" ".join(prepare_bbox_seq(i["bbox"])) for i in batch]
            label["bbox"] = vocab.encode_batch(bbox_list)

        return image_list, label


def generate_mask_for_batch_samples(
    batch, grid_size: int, num_mask_patches: int, min_num_patches: int
):
    N = len(batch)
    mg = MaskGenerator(
        input_size=grid_size,
        num_mask_patches=num_mask_patches,
        min_num_patches=min_num_patches,
    )
    mask_list = [mg() for _ in range(N)]
    return default_collate(batch), default_collate(mask_list)


def dataloader_vae(
    dataset: Dataset, batch_size: int, sampler: Sampler = None, **kwargs
) -> DataLoader:
    dataloader = DataLoader(
        dataset, batch_size, sampler=sampler, num_workers=8, pin_memory=True
    )

    return dataloader


def dataloader_beit(
    dataset: Dataset,
    grid_size: int,
    num_mask_patches: int,
    min_num_patches: int,
    batch_size: int,
    sampler: Sampler = None,
    **kwargs
):
    dataloader = DataLoader(
        dataset,
        batch_size,
        sampler=sampler,
        collate_fn=partial(
            generate_mask_for_batch_samples,
            grid_size=grid_size,
            num_mask_patches=num_mask_patches,
            min_num_patches=min_num_patches,
        ),
        num_workers=8,
        pin_memory=True,
    )

    return dataloader


def dataloader_html(
    dataset: Dataset,
    batch_size: int,
    vocab: tk.Tokenizer,
    max_seq_len: int,
    label_type: str,
    sampler=None,
) -> DataLoader:
    collate_fn = Collator(vocab, max_seq_len, label_type)

    dataloader = DataLoader(
        dataset,
        batch_size=batch_size,
        shuffle=False,
        num_workers=8,
        collate_fn=collate_fn,
        pin_memory=True,
        sampler=sampler,
    )

    return dataloader