""" SORT: A Simple, Online and Realtime Tracker Copyright (C) 2016-2020 Alex Bewley alex@bewley.ai This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . """ from __future__ import print_function import os import numpy as np import matplotlib import matplotlib.pyplot as plt import matplotlib.patches as patches from skimage import io import glob import time import argparse from filterpy.kalman import KalmanFilter np.random.seed(0) def linear_assignment(cost_matrix): try: import lap _, x, y = lap.lapjv(cost_matrix, extend_cost=True) return np.array([[y[i], i] for i in x if i >= 0]) except ImportError: from scipy.optimize import linear_sum_assignment x, y = linear_sum_assignment(cost_matrix) return np.array(list(zip(x, y))) def iou_batch(bb_test, bb_gt): """ From SORT: Computes IOU between two bboxes in the form [x1,y1,x2,y2] """ bb_gt = np.expand_dims(bb_gt, 0) bb_test = np.expand_dims(bb_test, 1) xx1 = np.maximum(bb_test[..., 0], bb_gt[..., 0]) yy1 = np.maximum(bb_test[..., 1], bb_gt[..., 1]) xx2 = np.minimum(bb_test[..., 2], bb_gt[..., 2]) yy2 = np.minimum(bb_test[..., 3], bb_gt[..., 3]) w = np.maximum(0., xx2 - xx1) h = np.maximum(0., yy2 - yy1) wh = w * h o = wh / ((bb_test[..., 2] - bb_test[..., 0]) * (bb_test[..., 3] - bb_test[..., 1]) + (bb_gt[..., 2] - bb_gt[..., 0]) * (bb_gt[..., 3] - bb_gt[..., 1]) - wh) return(o) def convert_bbox_to_z(bbox): """ Takes a bounding box in the form [x1,y1,x2,y2] and returns z in the form [x,y,s,r] where x,y is the centre of the box and s is the scale/area and r is the aspect ratio """ w = bbox[2] - bbox[0] h = bbox[3] - bbox[1] x = bbox[0] + w/2. y = bbox[1] + h/2. s = w * h # scale is just area r = w / float(h) return np.array([x, y, s, r]).reshape((4, 1)) def convert_x_to_bbox(x, score=None): """ Takes a bounding box in the centre form [x,y,s,r] and returns it in the form [x1,y1,x2,y2] where x1,y1 is the top left and x2,y2 is the bottom right """ w = np.sqrt(x[2] * x[3]) h = x[2] / w if(score == None): return np.array([x[0]-w/2., x[1]-h/2., x[0]+w/2., x[1]+h/2.]).reshape((1, 4)) else: return np.array([x[0]-w/2., x[1]-h/2., x[0]+w/2., x[1]+h/2., score]).reshape((1, 5)) class KalmanBoxTracker(object): """ This class represents the internal state of individual tracked objects observed as bbox. """ count = 0 def __init__(self, bbox, score): """ Initialises a tracker using initial bounding box. """ # define constant velocity model self.kf = KalmanFilter(dim_x=7, dim_z=4) self.kf.F = np.array([[1, 0, 0, 0, 1, 0, 0], [0, 1, 0, 0, 0, 1, 0], [0, 0, 1, 0, 0, 0, 1], [ 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 1]]) self.kf.H = np.array([[1, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0]]) self.kf.R[2:, 2:] *= 10. self.kf.P[4:, 4:] *= 1000. # give high uncertainty to the unobservable initial velocities self.kf.P *= 10. self.kf.Q[-1, -1] *= 0.01 self.kf.Q[4:, 4:] *= 0.01 self.kf.x[:4] = convert_bbox_to_z(bbox) self.time_since_update = 0 self.id = KalmanBoxTracker.count KalmanBoxTracker.count += 1 self.history = [] self.hits = 0 self.hit_streak = 0 self.age = 0 self.score = score def update(self, bbox, score): """ Updates the state vector with observed bbox. """ self.time_since_update = 0 self.history = [] self.hits += 1 self.hit_streak += 1 self.kf.update(convert_bbox_to_z(bbox)) self.score = score def predict(self): """ Advances the state vector and returns the predicted bounding box estimate. """ if((self.kf.x[6]+self.kf.x[2]) <= 0): self.kf.x[6] *= 0.0 self.kf.predict() self.age += 1 if(self.time_since_update > 0): self.hit_streak = 0 self.time_since_update += 1 self.history.append(convert_x_to_bbox(self.kf.x)) return self.history[-1] def get_state(self): """ Returns the current bounding box estimate. """ return convert_x_to_bbox(self.kf.x) def associate_detections_to_trackers(detections, trackers, iou_threshold=0.3): """ Assigns detections to tracked object (both represented as bounding boxes) Returns 3 lists of matches, unmatched_detections and unmatched_trackers """ if(len(trackers) == 0): return np.empty((0, 2), dtype=int), np.arange(len(detections)), np.empty((0, 5), dtype=int) iou_matrix = iou_batch(detections, trackers) if min(iou_matrix.shape) > 0: a = (iou_matrix > iou_threshold).astype(np.int32) if a.sum(1).max() == 1 and a.sum(0).max() == 1: matched_indices = np.stack(np.where(a), axis=1) else: matched_indices = linear_assignment(-iou_matrix) else: matched_indices = np.empty(shape=(0, 2)) unmatched_detections = [] for d, det in enumerate(detections): if(d not in matched_indices[:, 0]): unmatched_detections.append(d) unmatched_trackers = [] for t, trk in enumerate(trackers): if(t not in matched_indices[:, 1]): unmatched_trackers.append(t) # filter out matched with low IOU matches = [] for m in matched_indices: if(iou_matrix[m[0], m[1]] < iou_threshold): unmatched_detections.append(m[0]) unmatched_trackers.append(m[1]) else: matches.append(m.reshape(1, 2)) if(len(matches) == 0): matches = np.empty((0, 2), dtype=int) else: matches = np.concatenate(matches, axis=0) return matches, np.array(unmatched_detections), np.array(unmatched_trackers) class Sort(object): def __init__(self, max_age=1, min_hits=3, iou_threshold=0.3): """ Sets key parameters for SORT """ self.max_age = max_age self.min_hits = min_hits self.iou_threshold = iou_threshold self.trackers = [] self.frame_count = 0 def update(self, dets=np.empty((0, 5))): """ Params: dets - a numpy array of detections in the format [[x1,y1,x2,y2,score],[x1,y1,x2,y2,score],...] Requires: this method must be called once for each frame even with empty detections (use np.empty((0, 5)) for frames without detections). Returns the a similar array, where the last column is the object ID. NOTE: The number of objects returned may differ from the number of detections provided. """ self.frame_count += 1 empty_dets = dets.shape[0] == 0 # get predicted locations from existing trackers. trks = np.zeros((len(self.trackers), 5)) to_del = [] ret = [] for t, trk in enumerate(trks): pos = self.trackers[t].predict()[0] trk[:] = [pos[0], pos[1], pos[2], pos[3], 0] if np.any(np.isnan(pos)): to_del.append(t) trks = np.ma.compress_rows(np.ma.masked_invalid(trks)) for t in reversed(to_del): self.trackers.pop(t) matched, unmatched_dets, unmatched_trks = associate_detections_to_trackers(dets, trks, self.iou_threshold) # update matched trackers with assigned detections for m in matched: self.trackers[m[1]].update(dets[m[0], :], dets[m[0], -1]) # create and initialise new trackers for unmatched detections for i in unmatched_dets: trk = KalmanBoxTracker(dets[i, :], dets[i, -1]) self.trackers.append(trk) i = len(self.trackers) unmatched = [] for trk in reversed(self.trackers): d = trk.get_state()[0] if (trk.time_since_update < 1) and (trk.hit_streak >= self.min_hits or self.frame_count <= self.min_hits): ret.append(np.concatenate((d, [trk.score, trk.id+1])).reshape(1, -1)) # +1 as MOT benchmark requires positive i -= 1 # remove dead tracklet if(trk.time_since_update > self.max_age): self.trackers.pop(i) if empty_dets: unmatched.append(np.concatenate((d, [trk.score, trk.id + 1])).reshape(1, -1)) if len(ret): return np.concatenate(ret) elif empty_dets: return np.concatenate(unmatched) if len(unmatched) else np.empty((0, 6)) return np.empty((0, 6))