File size: 20,849 Bytes
e3641b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
import cv2
import matplotlib.pyplot as plt
import numpy as np
import torchvision
import ffmpeg


__all__ = ["joints_dict", "draw_points_and_skeleton"]


def joints_dict():
    joints = {
        "coco_25": {
            "keypoints": {
                0: "nose",
                1: "left_eye",
                2: "right_eye",
                3: "left_ear",
                4: "right_ear",
                5: "neck",
                6: "left_shoulder",
                7: "right_shoulder",
                8: "left_elbow",
                9: "right_elbow",
                10: "left_wrist",
                11: "right_wrist",
                12: "left_hip",
                13: "right_hip",
                14: "hip",
                15: "left_knee",
                16: "right_knee",
                17: "left_ankle",
                18: "right_ankle",
                19: "left_big toe",
                20: "left_small_toe",
                21: "left_heel",
                22: "right_big_toe",
                23: "right_small_toe",
                24: "right_heel",
            },
            "skeleton": [
                [17, 15], [15, 12], [18, 16], [16, 13], [12, 14], [13, 14], [5, 14],
                [6, 5], [7, 5], [6, 8], [7, 9], [8, 10], [9, 11], [1, 2], [0, 1], [0, 2],
                [1, 3], [2, 4], [17, 21], [18, 24], [19, 20], [22, 23], [19, 21],
                [22, 24], [5, 0]
            ]
        },

         "coco": {
            "keypoints": {
                0: "nose",
                1: "left_eye",
                2: "right_eye",
                3: "left_ear",
                4: "right_ear",
                5: "left_shoulder",
                6: "right_shoulder",
                7: "left_elbow",
                8: "right_elbow",
                9: "left_wrist",
                10: "right_wrist",
                11: "left_hip",
                12: "right_hip",
                13: "left_knee",
                14: "right_knee",
                15: "left_ankle",
                16: "right_ankle"
            },
            "skeleton": [
                [15, 13], [13, 11], [16, 14], [14, 12], [11, 12], [5, 11], [6, 12],
                [5, 6], [5, 7], [6, 8], [7, 9], [8, 10], [1, 2], [0, 1],
                [0, 2], [1, 3], [2, 4], [0, 5], [0, 6]
            ]
        },

        "mpii": {
            "keypoints": {
                0: "right_ankle",
                1: "right_knee",
                2: "right_hip",
                3: "left_hip",
                4: "left_knee",
                5: "left_ankle",
                6: "pelvis",
                7: "thorax",
                8: "upper_neck",
                9: "head top",
                10: "right_wrist",
                11: "right_elbow",
                12: "right_shoulder",
                13: "left_shoulder",
                14: "left_elbow",
                15: "left_wrist"
            },
            "skeleton": [
                [5, 4], [4, 3], [0, 1], [1, 2], [3, 2], [3, 6], [2, 6], [6, 7],
                [7, 8], [8, 9], [13, 7], [12, 7], [13, 14], [12, 11], [14, 15],
                [11, 10],
            ]
        },

        'ap10k': {
            'keypoints': {
                0: 'L_Eye',
                1: 'R_Eye',
                2: 'Nose',
                3: 'Neck',
                4: 'Root of tail',
                5: 'L_Shoulder',
                6: 'L_Elbow',
                7: 'L_F_Paw',
                8: 'R_Shoulder',
                9: 'R_Elbow',
                10: 'R_F_Paw',
                11: 'L_Hip',
                12: 'L_Knee',
                13: 'L_B_Paw',
                14: 'R_Hip',
                15: 'R_Knee',
                16: 'R_B_Paw'
            },
            'skeleton': [
                [0, 1], [0, 2], [1, 2], [2, 3], [3, 4], [3, 5], [5, 6], [6, 7],
                [3, 8], [8, 9], [9, 10], [4, 11], [11, 12], [12, 13], [4, 14],
                [14, 15], [15, 16]
            ]
        },

        'apt36k': {
            'keypoints': {
                0: 'L_Eye',
                1: 'R_Eye',
                2: 'Nose',
                3: 'Neck',
                4: 'Root of tail',
                5: 'L_Shoulder',
                6: 'L_Elbow',
                7: 'L_F_Paw',
                8: 'R_Shoulder',
                9: 'R_Elbow',
                10: 'R_F_Paw',
                11: 'L_Hip',
                12: 'L_Knee',
                13: 'L_B_Paw',
                14: 'R_Hip',
                15: 'R_Knee',
                16: 'R_B_Paw'
            },
            'skeleton': [
                [0, 1], [0, 2], [1, 2], [2, 3], [3, 4], [3, 5], [5, 6], [6, 7],
                [3, 8], [8, 9], [9, 10], [4, 11], [11, 12], [12, 13], [4, 14],
                [14, 15], [15, 16]
            ]
        },

        'aic': {
            'keypoints': {
                0: 'right_shoulder',
                1: 'right_elbow',
                2: 'right_wrist',
                3: 'left_shoulder',
                4: 'left_elbow',
                5: 'left_wrist',
                6: 'right_hip',
                7: 'right_knee',
                8: 'right_ankle',
                9: 'left_hip',
                10: 'left_knee',
                11: 'left_ankle',
                12: 'head_top',
                13: 'neck'
            },
            'skeleton': [
                [2, 1], [1, 0], [0, 13], [13, 3], [3, 4], [4, 5], [8, 7],
                [7, 6], [6, 9], [9, 10], [10, 11], [12, 13], [0, 6], [3, 9]
            ]
        },

        'wholebody': {
            'keypoints': {
                0: 'nose',
                1: 'left_eye',
                2: 'right_eye',
                3: 'left_ear',
                4: 'right_ear',
                5: 'left_shoulder',
                6: 'right_shoulder',
                7: 'left_elbow',
                8: 'right_elbow',
                9: 'left_wrist',
                10: 'right_wrist',
                11: 'left_hip',
                12: 'right_hip',
                13: 'left_knee',
                14: 'right_knee',
                15: 'left_ankle',
                16: 'right_ankle',
                17: 'left_big_toe',
                18: 'left_small_toe',
                19: 'left_heel',
                20: 'right_big_toe',
                21: 'right_small_toe',
                22: 'right_heel',
                23: 'face-0',
                24: 'face-1',
                25: 'face-2',
                26: 'face-3',
                27: 'face-4',
                28: 'face-5',
                29: 'face-6',
                30: 'face-7',
                31: 'face-8',
                32: 'face-9',
                33: 'face-10',
                34: 'face-11',
                35: 'face-12',
                36: 'face-13',
                37: 'face-14',
                38: 'face-15',
                39: 'face-16',
                40: 'face-17',
                41: 'face-18',
                42: 'face-19',
                43: 'face-20',
                44: 'face-21',
                45: 'face-22',
                46: 'face-23',
                47: 'face-24',
                48: 'face-25',
                49: 'face-26',
                50: 'face-27',
                51: 'face-28',
                52: 'face-29',
                53: 'face-30',
                54: 'face-31',
                55: 'face-32',
                56: 'face-33',
                57: 'face-34',
                58: 'face-35',
                59: 'face-36',
                60: 'face-37',
                61: 'face-38',
                62: 'face-39',
                63: 'face-40',
                64: 'face-41',
                65: 'face-42',
                66: 'face-43',
                67: 'face-44',
                68: 'face-45',
                69: 'face-46',
                70: 'face-47',
                71: 'face-48',
                72: 'face-49',
                73: 'face-50',
                74: 'face-51',
                75: 'face-52',
                76: 'face-53',
                77: 'face-54',
                78: 'face-55',
                79: 'face-56',
                80: 'face-57',
                81: 'face-58',
                82: 'face-59',
                83: 'face-60',
                84: 'face-61',
                85: 'face-62',
                86: 'face-63',
                87: 'face-64',
                88: 'face-65',
                89: 'face-66',
                90: 'face-67',
                91: 'left_hand_root',
                92: 'left_thumb1',
                93: 'left_thumb2',
                94: 'left_thumb3',
                95: 'left_thumb4',
                96: 'left_forefinger1',
                97: 'left_forefinger2',
                98: 'left_forefinger3',
                99: 'left_forefinger4',
                100: 'left_middle_finger1',
                101: 'left_middle_finger2',
                102: 'left_middle_finger3',
                103: 'left_middle_finger4',
                104: 'left_ring_finger1',
                105: 'left_ring_finger2',
                106: 'left_ring_finger3',
                107: 'left_ring_finger4',
                108: 'left_pinky_finger1',
                109: 'left_pinky_finger2',
                110: 'left_pinky_finger3',
                111: 'left_pinky_finger4',
                112: 'right_hand_root',
                113: 'right_thumb1',
                114: 'right_thumb2',
                115: 'right_thumb3',
                116: 'right_thumb4',
                117: 'right_forefinger1',
                118: 'right_forefinger2',
                119: 'right_forefinger3',
                120: 'right_forefinger4',
                121: 'right_middle_finger1',
                122: 'right_middle_finger2',
                123: 'right_middle_finger3',
                124: 'right_middle_finger4',
                125: 'right_ring_finger1',
                126: 'right_ring_finger2',
                127: 'right_ring_finger3',
                128: 'right_ring_finger4',
                129: 'right_pinky_finger1',
                130: 'right_pinky_finger2',
                131: 'right_pinky_finger3',
                132: 'right_pinky_finger4'
            },
            'skeleton': [
                [15, 13], [13, 11], [16, 14], [14, 12], [11, 12], [5, 11], [6, 12],
                [5, 6], [5, 7], [6, 8], [7, 9], [8, 10], [1, 2], [0, 1], [0, 2],
                [1, 3], [2, 4], [3, 5], [4, 6], [15, 17], [15, 18], [15, 19],
                [16, 20], [16, 21], [16, 22], [91, 92], [92, 93], [93, 94],
                [94, 95], [91, 96], [96, 97], [97, 98], [98, 99], [91, 100],
                [100, 101], [101, 102], [102, 103], [91, 104], [104, 105],
                [105, 106], [106, 107], [91, 108], [108, 109], [109, 110],
                [110, 111], [112, 113], [113, 114], [114, 115], [115, 116],
                [112, 117], [117, 118], [118, 119], [119, 120], [112, 121],
                [121, 122], [122, 123], [123, 124], [112, 125], [125, 126],
                [126, 127], [127, 128], [112, 129], [129, 130], [130, 131],
                [131, 132]
            ]
        }
    }
    return joints


def draw_points(image, points, color_palette='tab20', palette_samples=16, confidence_threshold=0.5):
    """
    Draws `points` on `image`.

    Args:
        image: image in opencv format
        points: list of points to be drawn.
            Shape: (nof_points, 3)
            Format: each point should contain (y, x, confidence)
        color_palette: name of a matplotlib color palette
            Default: 'tab20'
        palette_samples: number of different colors sampled from the `color_palette`
            Default: 16
        confidence_threshold: only points with a confidence higher than this threshold will be drawn. Range: [0, 1]
            Default: 0.5

    Returns:
        A new image with overlaid points

    """
    try:
        colors = np.round(
            np.array(plt.get_cmap(color_palette).colors) * 255
        ).astype(np.uint8)[:, ::-1].tolist()
    except AttributeError:  # if palette has not pre-defined colors
        colors = np.round(
            np.array(plt.get_cmap(color_palette)(np.linspace(0, 1, palette_samples))) * 255
        ).astype(np.uint8)[:, -2::-1].tolist()

    circle_size = max(1, min(image.shape[:2]) // 150)  # ToDo Shape it taking into account the size of the detection
    # circle_size = max(2, int(np.sqrt(np.max(np.max(points, axis=0) - np.min(points, axis=0)) // 16)))

    for i, pt in enumerate(points):
        if pt[2] > confidence_threshold:
            image = cv2.circle(image, (int(pt[1]), int(pt[0])), circle_size, tuple(colors[i % len(colors)]), -1)

    return image


def draw_skeleton(image, points, skeleton, color_palette='Set2', palette_samples=8, person_index=0,
                  confidence_threshold=0.5):
    """
    Draws a `skeleton` on `image`.

    Args:
        image: image in opencv format
        points: list of points to be drawn.
            Shape: (nof_points, 3)
            Format: each point should contain (y, x, confidence)
        skeleton: list of joints to be drawn
            Shape: (nof_joints, 2)
            Format: each joint should contain (point_a, point_b) where `point_a` and `point_b` are an index in `points`
        color_palette: name of a matplotlib color palette
            Default: 'Set2'
        palette_samples: number of different colors sampled from the `color_palette`
            Default: 8
        person_index: index of the person in `image`
            Default: 0
        confidence_threshold: only points with a confidence higher than this threshold will be drawn. Range: [0, 1]
            Default: 0.5

    Returns:
        A new image with overlaid joints

    """
    try:
        colors = np.round(
            np.array(plt.get_cmap(color_palette).colors) * 255
        ).astype(np.uint8)[:, ::-1].tolist()
    except AttributeError:  # if palette has not pre-defined colors
        colors = np.round(
            np.array(plt.get_cmap(color_palette)(np.linspace(0, 1, palette_samples))) * 255
        ).astype(np.uint8)[:, -2::-1].tolist()

    for i, joint in enumerate(skeleton):
        pt1, pt2 = points[joint]
        if pt1[2] > confidence_threshold and pt2[2] > confidence_threshold:
            image = cv2.line(
                image, (int(pt1[1]), int(pt1[0])), (int(pt2[1]), int(pt2[0])),
                tuple(colors[person_index % len(colors)]), 2
            )

    return image


def draw_points_and_skeleton(image, points, skeleton, points_color_palette='tab20', points_palette_samples=16,
                             skeleton_color_palette='Set2', skeleton_palette_samples=8, person_index=0,
                             confidence_threshold=0.5):
    """
    Draws `points` and `skeleton` on `image`.

    Args:
        image: image in opencv format
        points: list of points to be drawn.
            Shape: (nof_points, 3)
            Format: each point should contain (y, x, confidence)
        skeleton: list of joints to be drawn
            Shape: (nof_joints, 2)
            Format: each joint should contain (point_a, point_b) where `point_a` and `point_b` are an index in `points`
        points_color_palette: name of a matplotlib color palette
            Default: 'tab20'
        points_palette_samples: number of different colors sampled from the `color_palette`
            Default: 16
        skeleton_color_palette: name of a matplotlib color palette
            Default: 'Set2'
        skeleton_palette_samples: number of different colors sampled from the `color_palette`
            Default: 8
        person_index: index of the person in `image`
            Default: 0
        confidence_threshold: only points with a confidence higher than this threshold will be drawn. Range: [0, 1]
            Default: 0.5

    Returns:
        A new image with overlaid joints

    """
    image = draw_skeleton(image, points, skeleton, color_palette=skeleton_color_palette,
                          palette_samples=skeleton_palette_samples, person_index=person_index,
                          confidence_threshold=confidence_threshold)
    image = draw_points(image, points, color_palette=points_color_palette, palette_samples=points_palette_samples,
                        confidence_threshold=confidence_threshold)
    return image


def save_images(images, target, joint_target, output, joint_output, joint_visibility, summary_writer=None, step=0,
                prefix=''):
    """
    Creates a grid of images with gt joints and a grid with predicted joints.
    This is a basic function for debugging purposes only.

    If summary_writer is not None, the grid will be written in that SummaryWriter with name "{prefix}_images" and
    "{prefix}_predictions".

    Args:
        images (torch.Tensor): a tensor of images with shape (batch x channels x height x width).
        target (torch.Tensor): a tensor of gt heatmaps with shape (batch x channels x height x width).
        joint_target (torch.Tensor): a tensor of gt joints with shape (batch x joints x 2).
        output (torch.Tensor): a tensor of predicted heatmaps with shape (batch x channels x height x width).
        joint_output (torch.Tensor): a tensor of predicted joints with shape (batch x joints x 2).
        joint_visibility (torch.Tensor): a tensor of joint visibility with shape (batch x joints).
        summary_writer (tb.SummaryWriter): a SummaryWriter where write the grids.
            Default: None
        step (int): summary_writer step.
            Default: 0
        prefix (str): summary_writer name prefix.
            Default: ""

    Returns:
        A pair of images which are built from torchvision.utils.make_grid
    """
    # Input images with gt
    images_ok = images.detach().clone()
    images_ok[:, 0].mul_(0.229).add_(0.485)
    images_ok[:, 1].mul_(0.224).add_(0.456)
    images_ok[:, 2].mul_(0.225).add_(0.406)
    for i in range(images.shape[0]):
        joints = joint_target[i] * 4.
        joints_vis = joint_visibility[i]

        for joint, joint_vis in zip(joints, joints_vis):
            if joint_vis[0]:
                a = int(joint[1].item())
                b = int(joint[0].item())
                # images_ok[i][:, a-1:a+1, b-1:b+1] = torch.tensor([1, 0, 0])
                images_ok[i][0, a - 1:a + 1, b - 1:b + 1] = 1
                images_ok[i][1:, a - 1:a + 1, b - 1:b + 1] = 0
    grid_gt = torchvision.utils.make_grid(images_ok, nrow=int(images_ok.shape[0] ** 0.5), padding=2, normalize=False)
    if summary_writer is not None:
        summary_writer.add_image(prefix + 'images', grid_gt, global_step=step)

    # Input images with prediction
    images_ok = images.detach().clone()
    images_ok[:, 0].mul_(0.229).add_(0.485)
    images_ok[:, 1].mul_(0.224).add_(0.456)
    images_ok[:, 2].mul_(0.225).add_(0.406)
    for i in range(images.shape[0]):
        joints = joint_output[i] * 4.
        joints_vis = joint_visibility[i]

        for joint, joint_vis in zip(joints, joints_vis):
            if joint_vis[0]:
                a = int(joint[1].item())
                b = int(joint[0].item())
                # images_ok[i][:, a-1:a+1, b-1:b+1] = torch.tensor([1, 0, 0])
                images_ok[i][0, a - 1:a + 1, b - 1:b + 1] = 1
                images_ok[i][1:, a - 1:a + 1, b - 1:b + 1] = 0
    grid_pred = torchvision.utils.make_grid(images_ok, nrow=int(images_ok.shape[0] ** 0.5), padding=2, normalize=False)
    if summary_writer is not None:
        summary_writer.add_image(prefix + 'predictions', grid_pred, global_step=step)

    # Heatmaps
    # ToDo
    # for h in range(0,17):
    #     heatmap = torchvision.utils.make_grid(output[h].detach(), nrow=int(np.sqrt(output.shape[0])),
    #                                            padding=2, normalize=True, range=(0, 1))
    #     summary_writer.add_image('train_heatmap_%d' % h, heatmap, global_step=step + epoch*len_dl_train)

    return grid_gt, grid_pred


def check_video_rotation(filename):
    # thanks to
    # https://stackoverflow.com/questions/53097092/frame-from-video-is-upside-down-after-extracting/55747773#55747773

    # this returns meta-data of the video file in form of a dictionary
    meta_dict = ffmpeg.probe(filename)

    # from the dictionary, meta_dict['streams'][0]['tags']['rotate'] is the key
    # we are looking for
    rotation_code = None
    try:
        if int(meta_dict['streams'][0]['tags']['rotate']) == 90:
            rotation_code = cv2.ROTATE_90_CLOCKWISE
        elif int(meta_dict['streams'][0]['tags']['rotate']) == 180:
            rotation_code = cv2.ROTATE_180
        elif int(meta_dict['streams'][0]['tags']['rotate']) == 270:
            rotation_code = cv2.ROTATE_90_COUNTERCLOCKWISE
        else:
            raise ValueError
    except KeyError:
        pass

    return rotation_code