File size: 7,484 Bytes
e3641b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import os.path as osp

import torch
import torch.nn as nn

from vit_models.losses import JointsMSELoss
from vit_models.optimizer import LayerDecayOptimizer

from torch.nn.parallel import DataParallel, DistributedDataParallel
from torch.nn.utils import clip_grad_norm_
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR, MultiStepLR
from torch.utils.data import DataLoader, Dataset
from torch.utils.data.distributed import DistributedSampler
from torch.cuda.amp import autocast, GradScaler
from tqdm import tqdm
from time import time

from vit_utils.dist_util import get_dist_info, init_dist
from vit_utils.logging import get_root_logger

@torch.no_grad()
def valid_model(model: nn.Module, dataloaders: DataLoader, criterion: nn.Module, cfg: dict) -> None:
    total_loss = 0
    total_metric = 0
    model.eval()
    for dataloader in dataloaders:
        for batch_idx, batch in enumerate(dataloader):
            images, targets, target_weights, __ = batch
            images = images.to('cuda')
            targets = targets.to('cuda')
            target_weights = target_weights.to('cuda')
            
            outputs = model(images)
            loss = criterion(outputs, targets, target_weights)
            total_loss += loss.item()
            
    avg_loss = total_loss/(len(dataloader)*len(dataloaders))
    return avg_loss
 
def train_model(model: nn.Module, datasets_train: Dataset, datasets_valid: Dataset, cfg: dict, distributed: bool, validate: bool,  timestamp: str, meta: dict) -> None:
    logger = get_root_logger()
    
    # Prepare data loaders
    datasets_train = datasets_train if isinstance(datasets_train, (list, tuple)) else [datasets_train]
    datasets_valid = datasets_valid if isinstance(datasets_valid, (list, tuple)) else [datasets_valid]
    
    if distributed:
        samplers_train = [DistributedSampler(ds, num_replicas=len(cfg.gpu_ids), rank=torch.cuda.current_device(), shuffle=True, drop_last=False) for ds in datasets_train]
        samplers_valid = [DistributedSampler(ds, num_replicas=len(cfg.gpu_ids), rank=torch.cuda.current_device(), shuffle=False, drop_last=False) for ds in datasets_valid]
    else:
        samplers_train = [None for ds in datasets_train]
        samplers_valid = [None for ds in datasets_valid]
    
    dataloaders_train = [DataLoader(ds, batch_size=cfg.data['samples_per_gpu'], shuffle=True, sampler=sampler, num_workers=cfg.data['workers_per_gpu'], pin_memory=False) for ds, sampler in zip(datasets_train, samplers_train)]
    dataloaders_valid = [DataLoader(ds, batch_size=cfg.data['samples_per_gpu'], shuffle=False, sampler=sampler, num_workers=cfg.data['workers_per_gpu'], pin_memory=False) for ds, sampler in zip(datasets_valid, samplers_valid)]

    # put model on gpus
    if distributed:
        find_unused_parameters = cfg.get('find_unused_parameters', False)
        # Sets the `find_unused_parameters` parameter in
        # torch.nn.parallel.DistributedDataParallel

        model = DistributedDataParallel(
            module=model, 
            device_ids=[torch.cuda.current_device()], 
            broadcast_buffers=False, 
            find_unused_parameters=find_unused_parameters)
    else:
        model = DataParallel(model, device_ids=cfg.gpu_ids)

    # Loss function
    criterion = JointsMSELoss(use_target_weight=cfg.model['keypoint_head']['loss_keypoint']['use_target_weight'])
    
    # Optimizer
    optimizer = AdamW(model.parameters(), lr=cfg.optimizer['lr'], betas=cfg.optimizer['betas'], weight_decay=cfg.optimizer['weight_decay'])
    
    # Layer-wise learning rate decay
    lr_mult = [cfg.optimizer['paramwise_cfg']['layer_decay_rate']] * cfg.optimizer['paramwise_cfg']['num_layers']
    layerwise_optimizer = LayerDecayOptimizer(optimizer, lr_mult)
    
    
    # Learning rate scheduler (MultiStepLR)
    milestones = cfg.lr_config['step']
    gamma = 0.1
    scheduler = MultiStepLR(optimizer, milestones, gamma)

    # Warm-up scheduler
    num_warmup_steps = cfg.lr_config['warmup_iters']  # Number of warm-up steps
    warmup_factor = cfg.lr_config['warmup_ratio']  # Initial learning rate = warmup_factor * learning_rate
    warmup_scheduler = LambdaLR(
        optimizer,
        lr_lambda=lambda step: warmup_factor + (1.0 - warmup_factor) * step / num_warmup_steps
    )
    
    # AMP setting
    if cfg.use_amp:
        logger.info("Using Automatic Mixed Precision (AMP) training...")
        # Create a GradScaler object for FP16 training
        scaler = GradScaler()
    
    # Logging config
    total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
    logger.info(f'''\n
    #========= [Train Configs] =========#
    # - Num GPUs: {len(cfg.gpu_ids)}
    # - Batch size (per gpu): {cfg.data['samples_per_gpu']}
    # - LR: {cfg.optimizer['lr']: .6f}
    # - Num params: {total_params:,d}
    # - AMP: {cfg.use_amp}
    #===================================# 
    ''')
    
    global_step = 0
    for dataloader in dataloaders_train:
        for epoch in range(cfg.total_epochs):
            model.train()
            train_pbar = tqdm(dataloader)
            total_loss = 0
            tic = time()
            for batch_idx, batch in enumerate(train_pbar):
                layerwise_optimizer.zero_grad()
                    
                images, targets, target_weights, __ = batch
                images = images.to('cuda')
                targets = targets.to('cuda')
                target_weights = target_weights.to('cuda')
                
                if cfg.use_amp:
                    with autocast():
                        outputs = model(images)
                        loss = criterion(outputs, targets, target_weights)
                    scaler.scale(loss).backward()
                    clip_grad_norm_(model.parameters(), **cfg.optimizer_config['grad_clip'])
                    scaler.step(layerwise_optimizer)
                    scaler.update()
                else:
                    outputs = model(images)
                    loss = criterion(outputs, targets, target_weights)
                    loss.backward()
                    clip_grad_norm_(model.parameters(), **cfg.optimizer_config['grad_clip'])
                    layerwise_optimizer.step()
                
                if global_step < num_warmup_steps:
                    warmup_scheduler.step()
                global_step += 1
                
                total_loss += loss.item()
                train_pbar.set_description(f"🏋️> Epoch [{str(epoch).zfill(3)}/{str(cfg.total_epochs).zfill(3)}] | Loss {loss.item():.4f} | LR {optimizer.param_groups[0]['lr']:.6f} | Step")
            scheduler.step()
            
            avg_loss_train = total_loss/len(dataloader)
            logger.info(f"[Summary-train] Epoch [{str(epoch).zfill(3)}/{str(cfg.total_epochs).zfill(3)}] | Average Loss (train) {avg_loss_train:.4f} --- {time()-tic:.5f} sec. elapsed")
            ckpt_name = f"epoch{str(epoch).zfill(3)}.pth"
            ckpt_path = osp.join(cfg.work_dir, ckpt_name)
            torch.save(model.module.state_dict(), ckpt_path)

            # validation
            if validate:
                tic2 = time()
                avg_loss_valid = valid_model(model, dataloaders_valid, criterion, cfg)
                logger.info(f"[Summary-valid] Epoch [{str(epoch).zfill(3)}/{str(cfg.total_epochs).zfill(3)}] | Average Loss (valid) {avg_loss_valid:.4f} --- {time()-tic2:.5f} sec. elapsed")