File size: 22,333 Bytes
e3641b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
# Part of this code is derived/taken from https://github.com/leoxiaobin/deep-high-resolution-net.pytorch
import os
import sys
import pickle
import random

import cv2
import json_tricks as json
import numpy as np
from pycocotools.coco import COCO
from torchvision import transforms
import torchvision.transforms.functional as F
from tqdm import tqdm
from PIL import Image

from .HumanPoseEstimation import HumanPoseEstimationDataset as Dataset

sys.path.append(os.path.dirname(os.path.dirname(__file__)))
from vit_utils.transform import fliplr_joints, affine_transform, get_affine_transform

import numpy as np


class COCODataset(Dataset):
    """
    COCODataset class.
    """

    def __init__(self, root_path="./datasets/COCO", data_version="train2017", 
                 is_train=True, use_gt_bboxes=True, bbox_path="",
                 image_width=288, image_height=384,
                 scale=True, scale_factor=0.35, flip_prob=0.5, rotate_prob=0.5, rotation_factor=45., half_body_prob=0.3,
                 use_different_joints_weight=False, heatmap_sigma=3, soft_nms=False):
        """
        Initializes a new COCODataset object.

        Image and annotation indexes are loaded and stored in memory.
        Annotations are preprocessed to have a simple list of annotations to iterate over.

        Bounding boxes can be loaded from the ground truth or from a pickle file (in this case, no annotations are
        provided).

        Args:
            root_path (str): dataset root path.
                Default: "./datasets/COCO"
            data_version (str): desired version/folder of COCO. Possible options are "train2017", "val2017".
                Default: "train2017"
            is_train (bool): train or eval mode. If true, train mode is used.
                Default: True
            use_gt_bboxes (bool): use ground truth bounding boxes. If False, bbox_path is required.
                Default: True
            bbox_path (str): bounding boxes pickle file path.
                Default: ""
            image_width (int): image width.
                Default: 288
            image_height (int): image height.
                Default: ``384``
            color_rgb (bool): rgb or bgr color mode. If True, rgb color mode is used.
                Default: True
            scale (bool): scale mode.
                Default: True
            scale_factor (float): scale factor.
                Default: 0.35
            flip_prob (float): flip probability.
                Default: 0.5
            rotate_prob (float): rotate probability.
                Default: 0.5
            rotation_factor (float): rotation factor.
                Default: 45.
            half_body_prob (float): half body probability.
                Default: 0.3
            use_different_joints_weight (bool): use different joints weights.
                If true, the following joints weights will be used:
                [1., 1., 1., 1., 1., 1., 1., 1.2, 1.2, 1.5, 1.5, 1., 1., 1.2, 1.2, 1.5, 1.5]
                Default: False
            heatmap_sigma (float): sigma of the gaussian used to create the heatmap.
                Default: 3
            soft_nms (bool): enable soft non-maximum suppression.
                Default: False
        """
        super(COCODataset, self).__init__()

        self.root_path = root_path
        self.data_version = data_version
        self.is_train = is_train
        self.use_gt_bboxes = use_gt_bboxes
        self.bbox_path = bbox_path
        self.scale = scale  # ToDo Check
        self.scale_factor = scale_factor
        self.flip_prob = flip_prob
        self.rotate_prob = rotate_prob
        self.rotation_factor = rotation_factor
        self.half_body_prob = half_body_prob
        self.use_different_joints_weight = use_different_joints_weight  # ToDo Check
        self.heatmap_sigma = heatmap_sigma
        self.soft_nms = soft_nms

        # Image & annotation path
        self.data_path = f"{root_path}/{data_version}"
        self.annotation_path = f"{root_path}/annotations/person_keypoints_{data_version}.json"

        self.image_size = (image_width, image_height)
        self.aspect_ratio = image_width * 1.0 / image_height

        self.heatmap_size = (int(image_width / 4), int(image_height / 4))
        self.heatmap_type = 'gaussian'
        self.pixel_std = 200  # I don't understand the meaning of pixel_std (=200) in the original implementation

        self.num_joints = 25
        self.num_joints_half_body = 15

        # eye, ear, shoulder, elbow, wrist, hip, knee, ankle
        self.flip_pairs = [[1, 2], [3, 4], [6, 7], [8, 9], [10, 11], [12, 13],
                           [15, 16], [17, 18], [19, 22], [20, 23], [21, 24]]
        self.upper_body_ids = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
        self.lower_body_ids = [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]
        self.joints_weight = np.array([1., 1., 1., 1., 1., 1., 1., 1., 1.2, 1.2,
                                       1.5, 1.5, 1., 1., 1., 1.2, 1.2, 1.5, 1.5,
                                       1.5, 1.5, 1.5, 1.5, 1.5,
                                       1.5]).reshape((self.num_joints, 1))

        self.transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
        ])

        # Load COCO dataset - Create COCO object then load images and annotations
        self.coco = COCO(self.annotation_path)

        # Create a list of annotations and the corresponding image (each image can contain more than one detection)

        """ Load bboxes and joints
        - if self.use_gt_bboxes -> Load GT bboxes and joints
        - else -> Load pre-predicted bboxes by a detector (as YOLOv3) and null joints 
        """

        if not self.use_gt_bboxes:
            """
            bboxes must be saved as the original COCO annotations
            i.e. the format must be:
             bboxes = {
               '<imgId>': [
                 {
                   'id': <annId>,  # progressive id for debugging
                   'clean_bbox': np.array([<x>, <y>, <w>, <h>])}
                 },
                 ...
               ],
               ...
             }
            """
            with open(self.bbox_path, 'rb') as fd:
                bboxes = pickle.load(fd)

        self.data = []
        # load annotations for each image of COCO
        for imgId in tqdm(self.coco.getImgIds(), desc="Prepare images, annotations ... "):
            ann_ids = self.coco.getAnnIds(imgIds=imgId, iscrowd=False)  # annotation ids
            img = self.coco.loadImgs(imgId)[0]  # load img

            if self.use_gt_bboxes:
                objs = self.coco.loadAnns(ann_ids)

                # sanitize bboxes
                valid_objs = []
                for obj in objs:
                    # Skip non-person objects (it should never happen)
                    if obj['category_id'] != 1:
                        continue

                    # ignore objs without keypoints annotation
                    if max(obj['keypoints']) == 0 and max(obj['foot_kpts']) == 0:
                        continue

                    x, y, w, h = obj['bbox']
                    x1 = np.max((0, x))
                    y1 = np.max((0, y))
                    x2 = np.min((img['width'] - 1, x1 + np.max((0, w - 1))))
                    y2 = np.min((img['height'] - 1, y1 + np.max((0, h - 1))))

                    # Use only valid bounding boxes
                    if obj['area'] > 0 and x2 >= x1 and y2 >= y1:
                        obj['clean_bbox'] = [x1, y1, x2 - x1, y2 - y1]
                        valid_objs.append(obj)

                objs = valid_objs

            else:
                objs = bboxes[imgId]

            # for each annotation of this image, add the formatted annotation to self.data
            for obj in objs:
                joints = np.zeros((self.num_joints, 2), dtype=np.float)
                joints_visibility = np.ones((self.num_joints, 2), dtype=np.float)

                # Add foot data to keypoints
                obj['keypoints'].extend(obj['foot_kpts'])

                if self.use_gt_bboxes:
                    """ COCO pre-processing

                    - Moved above
                    - Skip non-person objects (it should never happen)
                    if obj['category_id'] != 1:
                        continue

                    # ignore objs without keypoints annotation
                    if max(obj['keypoints']) == 0:
                        continue
                    """

                    # Not all joints are already present, skip them
                    vjoints = list(range(self.num_joints))
                    vjoints.remove(5)
                    vjoints.remove(14)

                    for idx, pt in enumerate(vjoints):
                        if pt == 5 or pt == 14:
                            continue  # Neck and hip are manually filled
                        joints[pt, 0] = obj['keypoints'][idx * 3 + 0]
                        joints[pt, 1] = obj['keypoints'][idx * 3 + 1]
                        t_vis = int(np.clip(obj['keypoints'][idx * 3 + 2], 0, 1))
                        """
                        - COCO:
                          if visibility == 0 -> keypoint is not in the image.
                          if visibility == 1 -> keypoint is in the image BUT not visible
                                                (e.g. behind an object).
                          if visibility == 2 -> keypoint looks clearly
                                                (i.e. it is not hidden).
                        """
                        joints_visibility[pt, 0] = t_vis
                        joints_visibility[pt, 1] = t_vis

                center, scale = self._box2cs(obj['clean_bbox'][:4])

                # Add neck and c-hip (check utils/visualization.py for keypoints)
                joints[5, 0] = (joints[6, 0] + joints[7, 0]) / 2
                joints[5, 1] = (joints[6, 1] + joints[7, 1]) / 2
                joints_visibility[5, :] = min(joints_visibility[6, 0],
                                              joints_visibility[7, 0])
                joints[14, 0] = (joints[12, 0] + joints[13, 0]) / 2
                joints[14, 1] = (joints[12, 1] + joints[13, 1]) / 2
                joints_visibility[14, :] = min(joints_visibility[12, 0],
                                               joints_visibility[13, 0])

                self.data.append({
                    'imgId': imgId,
                    'annId': obj['id'],
                    'imgPath': f"{self.root_path}/{self.data_version}/{imgId:012d}.jpg",
                    'center': center,
                    'scale': scale,
                    'joints': joints,
                    'joints_visibility': joints_visibility,
                })

        # Done check if we need prepare_data -> We should not
        print('\nCOCO dataset loaded!')

        # Default values
        self.bbox_thre = 1.0
        self.image_thre = 0.0
        self.in_vis_thre = 0.2
        self.nms_thre = 1.0
        self.oks_thre = 0.9

    def __len__(self):
        return len(self.data)

    def __getitem__(self, index):
        # index = 0
        joints_data = self.data[index].copy()

        # Load image
        try:
            image = np.array(Image.open(joints_data['imgPath']))
            if image.ndim == 2:
                # Some images are grayscale and will fail the trasform, convert to RGB
                image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
        except:
            raise ValueError(f"Fail to read {joints_data['imgPath']}")

        joints = joints_data['joints']
        joints_vis = joints_data['joints_visibility']

        c = joints_data['center']
        s = joints_data['scale']
        score = joints_data['score'] if 'score' in joints_data else 1
        r = 0

        # Apply data augmentation
        if self.is_train:
            if (self.half_body_prob and random.random() < self.half_body_prob and
                np.sum(joints_vis[:, 0]) > self.num_joints_half_body):
                c_half_body, s_half_body = self._half_body_transform(joints, joints_vis)

                if c_half_body is not None and s_half_body is not None:
                    c, s = c_half_body, s_half_body

            sf = self.scale_factor
            rf = self.rotation_factor

            if self.scale:
                # A random scale factor in [1 - sf, 1 + sf]
                s = s * np.clip(random.random() * sf + 1, 1 - sf, 1 + sf)

            if self.rotate_prob and random.random() < self.rotate_prob:
                # A random rotation factor in [-2 * rf, 2 * rf]
                r = np.clip(random.random() * rf, -rf * 2, rf * 2)
            else:
                r = 0

            if self.flip_prob and random.random() < self.flip_prob:
                image = image[:, ::-1, :]
                joints, joints_vis = fliplr_joints(joints, joints_vis,
                                                   image.shape[1],
                                                   self.flip_pairs)
                c[0] = image.shape[1] - c[0] - 1

        # Apply affine transform on joints and image
        trans = get_affine_transform(c, s, self.pixel_std, r, self.image_size)
        image = cv2.warpAffine(
            image,
            trans,
            (int(self.image_size[0]), int(self.image_size[1])),
            flags=cv2.INTER_LINEAR
        )

        for i in range(self.num_joints):
            if joints_vis[i, 0] > 0.:
                joints[i, 0:2] = affine_transform(joints[i, 0:2], trans)

        # Convert image to tensor and normalize
        if self.transform is not None:  # I could remove this check
            image = self.transform(image)

        target, target_weight = self._generate_target(joints, joints_vis)

        # Update metadata
        joints_data['joints'] = joints
        joints_data['joints_visibility'] = joints_vis
        joints_data['center'] = c
        joints_data['scale'] = s
        joints_data['rotation'] = r
        joints_data['score'] = score

        # from utils.visualization import draw_points_and_skeleton, joints_dict
        # image = np.rollaxis(image.detach().cpu().numpy(), 0, 3)
        # joints = np.hstack((joints[:, ::-1], joints_vis[:, 0][..., None]))
        # image = draw_points_and_skeleton(image.copy(), joints,
        #                                  joints_dict()['coco']['skeleton'],
        #                                  person_index=0,
        #                                  points_color_palette='gist_rainbow',
        #                                  skeleton_color_palette='jet',
        #                                  points_palette_samples=10,
        #                                  confidence_threshold=0.4)
        # cv2.imshow('', image)
        # cv2.waitKey(0)

        return image, target.astype(np.float32), target_weight.astype(np.float32), joints_data


    # Private methods
    def _box2cs(self, box):
        x, y, w, h = box[:4]
        return self._xywh2cs(x, y, w, h)

    def _xywh2cs(self, x, y, w, h):
        center = np.zeros((2,), dtype=np.float32)
        center[0] = x + w * 0.5
        center[1] = y + h * 0.5

        if w > self.aspect_ratio * h:
            h = w * 1.0 / self.aspect_ratio
        elif w < self.aspect_ratio * h:
            w = h * self.aspect_ratio
        scale = np.array(
            [w * 1.0 / self.pixel_std, h * 1.0 / self.pixel_std],
            dtype=np.float32)
        if center[0] != -1:
            scale = scale * 1.25

        return center, scale

    def _half_body_transform(self, joints, joints_vis):
        upper_joints = []
        lower_joints = []
        for joint_id in range(self.num_joints):
            if joints_vis[joint_id][0] > 0:
                if joint_id in self.upper_body_ids:
                    upper_joints.append(joints[joint_id])
                else:
                    lower_joints.append(joints[joint_id])

        if random.random() < 0.5 and len(upper_joints) > 2:
            selected_joints = upper_joints
        else:
            selected_joints = lower_joints \
                if len(lower_joints) > 2 else upper_joints

        if len(selected_joints) < 2:
            return None, None

        selected_joints = np.array(selected_joints, dtype=np.float32)
        center = selected_joints.mean(axis=0)[:2]

        left_top = np.amin(selected_joints, axis=0)
        right_bottom = np.amax(selected_joints, axis=0)

        w = right_bottom[0] - left_top[0]
        h = right_bottom[1] - left_top[1]

        if w > self.aspect_ratio * h:
            h = w * 1.0 / self.aspect_ratio
        elif w < self.aspect_ratio * h:
            w = h * self.aspect_ratio

        scale = np.array(
            [
                w * 1.0 / self.pixel_std,
                h * 1.0 / self.pixel_std
            ],
            dtype=np.float32
        )

        scale = scale * 1.5

        return center, scale

    def _generate_target(self, joints, joints_vis):
        """
        :param joints:  [num_joints, 2]
        :param joints_vis: [num_joints, 2]
        :return: target, target_weight(1: visible, 0: invisible)
        """
        target_weight = np.ones((self.num_joints, 1), dtype=np.float32)
        target_weight[:, 0] = joints_vis[:, 0]

        if self.heatmap_type == 'gaussian':
            target = np.zeros((self.num_joints,
                               self.heatmap_size[1],
                               self.heatmap_size[0]),
                              dtype=np.float32)

            tmp_size = self.heatmap_sigma * 3

            for joint_id in range(self.num_joints):
                feat_stride = np.asarray(self.image_size) / np.asarray(self.heatmap_size)
                mu_x = int(joints[joint_id][0] / feat_stride[0] + 0.5)
                mu_y = int(joints[joint_id][1] / feat_stride[1] + 0.5)
                # Check that any part of the gaussian is in-bounds
                ul = [int(mu_x - tmp_size), int(mu_y - tmp_size)]
                br = [int(mu_x + tmp_size + 1), int(mu_y + tmp_size + 1)]
                if ul[0] >= self.heatmap_size[0] or ul[1] >= self.heatmap_size[1] \
                        or br[0] < 0 or br[1] < 0:
                    # If not, just return the image as is
                    target_weight[joint_id] = 0
                    continue

                # # Generate gaussian
                size = 2 * tmp_size + 1
                x = np.arange(0, size, 1, np.float32)
                y = x[:, np.newaxis]
                x0 = y0 = size // 2
                # The gaussian is not normalized, we want the center value to equal 1
                g = np.exp(- ((x - x0) ** 2 + (y - y0) ** 2) / (2 * self.heatmap_sigma ** 2))

                # Usable gaussian range
                g_x = max(0, -ul[0]), min(br[0], self.heatmap_size[0]) - ul[0]
                g_y = max(0, -ul[1]), min(br[1], self.heatmap_size[1]) - ul[1]
                # Image range
                img_x = max(0, ul[0]), min(br[0], self.heatmap_size[0])
                img_y = max(0, ul[1]), min(br[1], self.heatmap_size[1])

                v = target_weight[joint_id]
                if v > 0.5:
                    target[joint_id][img_y[0]:img_y[1], img_x[0]:img_x[1]] = \
                        g[g_y[0]:g_y[1], g_x[0]:g_x[1]]
        else:
            raise NotImplementedError

        if self.use_different_joints_weight:
            target_weight = np.multiply(target_weight, self.joints_weight)

        return target, target_weight

    def _write_coco_keypoint_results(self, keypoints, res_file):
        data_pack = [
            {
                'cat_id': 1,  # 1 == 'person'
                'cls': 'person',
                'ann_type': 'keypoints',
                'keypoints': keypoints
            }
        ]

        results = self._coco_keypoint_results_one_category_kernel(data_pack[0])
        with open(res_file, 'w') as f:
            json.dump(results, f, sort_keys=True, indent=4)
        try:
            json.load(open(res_file))
        except Exception:
            content = []
            with open(res_file, 'r') as f:
                for line in f:
                    content.append(line)
            content[-1] = ']'
            with open(res_file, 'w') as f:
                for c in content:
                    f.write(c)

    def _coco_keypoint_results_one_category_kernel(self, data_pack):
        cat_id = data_pack['cat_id']
        keypoints = data_pack['keypoints']
        cat_results = []

        for img_kpts in keypoints:
            if len(img_kpts) == 0:
                continue

            _key_points = np.array([img_kpts[k]['keypoints'] for k in range(len(img_kpts))], dtype=np.float32)
            key_points = np.zeros((_key_points.shape[0], self.num_joints * 3), dtype=np.float32)

            for ipt in range(self.num_joints):
                key_points[:, ipt * 3 + 0] = _key_points[:, ipt, 0]
                key_points[:, ipt * 3 + 1] = _key_points[:, ipt, 1]
                key_points[:, ipt * 3 + 2] = _key_points[:, ipt, 2]  # keypoints score.

            result = [
                {
                    'image_id': img_kpts[k]['image'],
                    'category_id': cat_id,
                    'keypoints': list(key_points[k]),
                    'score': img_kpts[k]['score'].astype(np.float32),
                    'center': list(img_kpts[k]['center']),
                    'scale': list(img_kpts[k]['scale'])
                }
                for k in range(len(img_kpts))
            ]
            cat_results.extend(result)

        return cat_results


if __name__ == '__main__':
    # from skimage import io
    coco = COCODataset(root_path=f"{os.path.dirname(__file__)}/COCO", data_version="traincoex", rotate_prob=0., half_body_prob=0.)
    item = coco[1]
    # io.imsave("tmp.jpg", item[0].permute(1,2,0).numpy())
    print()
    print(item[1].shape)
    print('ok!!')
    # img = np.clip(np.transpose(item[0].numpy(), (1, 2, 0))[:, :, ::-1] * np.asarray([0.229, 0.224, 0.225]) +
    #     np.asarray([0.485, 0.456, 0.406]), 0, 1) * 255
    # cv2.imwrite('./tmp.png', img.astype(np.uint8))
    # print(item[-1])
    pass