Spaces:
Running
Running
File size: 22,333 Bytes
e3641b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 |
# Part of this code is derived/taken from https://github.com/leoxiaobin/deep-high-resolution-net.pytorch
import os
import sys
import pickle
import random
import cv2
import json_tricks as json
import numpy as np
from pycocotools.coco import COCO
from torchvision import transforms
import torchvision.transforms.functional as F
from tqdm import tqdm
from PIL import Image
from .HumanPoseEstimation import HumanPoseEstimationDataset as Dataset
sys.path.append(os.path.dirname(os.path.dirname(__file__)))
from vit_utils.transform import fliplr_joints, affine_transform, get_affine_transform
import numpy as np
class COCODataset(Dataset):
"""
COCODataset class.
"""
def __init__(self, root_path="./datasets/COCO", data_version="train2017",
is_train=True, use_gt_bboxes=True, bbox_path="",
image_width=288, image_height=384,
scale=True, scale_factor=0.35, flip_prob=0.5, rotate_prob=0.5, rotation_factor=45., half_body_prob=0.3,
use_different_joints_weight=False, heatmap_sigma=3, soft_nms=False):
"""
Initializes a new COCODataset object.
Image and annotation indexes are loaded and stored in memory.
Annotations are preprocessed to have a simple list of annotations to iterate over.
Bounding boxes can be loaded from the ground truth or from a pickle file (in this case, no annotations are
provided).
Args:
root_path (str): dataset root path.
Default: "./datasets/COCO"
data_version (str): desired version/folder of COCO. Possible options are "train2017", "val2017".
Default: "train2017"
is_train (bool): train or eval mode. If true, train mode is used.
Default: True
use_gt_bboxes (bool): use ground truth bounding boxes. If False, bbox_path is required.
Default: True
bbox_path (str): bounding boxes pickle file path.
Default: ""
image_width (int): image width.
Default: 288
image_height (int): image height.
Default: ``384``
color_rgb (bool): rgb or bgr color mode. If True, rgb color mode is used.
Default: True
scale (bool): scale mode.
Default: True
scale_factor (float): scale factor.
Default: 0.35
flip_prob (float): flip probability.
Default: 0.5
rotate_prob (float): rotate probability.
Default: 0.5
rotation_factor (float): rotation factor.
Default: 45.
half_body_prob (float): half body probability.
Default: 0.3
use_different_joints_weight (bool): use different joints weights.
If true, the following joints weights will be used:
[1., 1., 1., 1., 1., 1., 1., 1.2, 1.2, 1.5, 1.5, 1., 1., 1.2, 1.2, 1.5, 1.5]
Default: False
heatmap_sigma (float): sigma of the gaussian used to create the heatmap.
Default: 3
soft_nms (bool): enable soft non-maximum suppression.
Default: False
"""
super(COCODataset, self).__init__()
self.root_path = root_path
self.data_version = data_version
self.is_train = is_train
self.use_gt_bboxes = use_gt_bboxes
self.bbox_path = bbox_path
self.scale = scale # ToDo Check
self.scale_factor = scale_factor
self.flip_prob = flip_prob
self.rotate_prob = rotate_prob
self.rotation_factor = rotation_factor
self.half_body_prob = half_body_prob
self.use_different_joints_weight = use_different_joints_weight # ToDo Check
self.heatmap_sigma = heatmap_sigma
self.soft_nms = soft_nms
# Image & annotation path
self.data_path = f"{root_path}/{data_version}"
self.annotation_path = f"{root_path}/annotations/person_keypoints_{data_version}.json"
self.image_size = (image_width, image_height)
self.aspect_ratio = image_width * 1.0 / image_height
self.heatmap_size = (int(image_width / 4), int(image_height / 4))
self.heatmap_type = 'gaussian'
self.pixel_std = 200 # I don't understand the meaning of pixel_std (=200) in the original implementation
self.num_joints = 25
self.num_joints_half_body = 15
# eye, ear, shoulder, elbow, wrist, hip, knee, ankle
self.flip_pairs = [[1, 2], [3, 4], [6, 7], [8, 9], [10, 11], [12, 13],
[15, 16], [17, 18], [19, 22], [20, 23], [21, 24]]
self.upper_body_ids = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
self.lower_body_ids = [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]
self.joints_weight = np.array([1., 1., 1., 1., 1., 1., 1., 1., 1.2, 1.2,
1.5, 1.5, 1., 1., 1., 1.2, 1.2, 1.5, 1.5,
1.5, 1.5, 1.5, 1.5, 1.5,
1.5]).reshape((self.num_joints, 1))
self.transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
# Load COCO dataset - Create COCO object then load images and annotations
self.coco = COCO(self.annotation_path)
# Create a list of annotations and the corresponding image (each image can contain more than one detection)
""" Load bboxes and joints
- if self.use_gt_bboxes -> Load GT bboxes and joints
- else -> Load pre-predicted bboxes by a detector (as YOLOv3) and null joints
"""
if not self.use_gt_bboxes:
"""
bboxes must be saved as the original COCO annotations
i.e. the format must be:
bboxes = {
'<imgId>': [
{
'id': <annId>, # progressive id for debugging
'clean_bbox': np.array([<x>, <y>, <w>, <h>])}
},
...
],
...
}
"""
with open(self.bbox_path, 'rb') as fd:
bboxes = pickle.load(fd)
self.data = []
# load annotations for each image of COCO
for imgId in tqdm(self.coco.getImgIds(), desc="Prepare images, annotations ... "):
ann_ids = self.coco.getAnnIds(imgIds=imgId, iscrowd=False) # annotation ids
img = self.coco.loadImgs(imgId)[0] # load img
if self.use_gt_bboxes:
objs = self.coco.loadAnns(ann_ids)
# sanitize bboxes
valid_objs = []
for obj in objs:
# Skip non-person objects (it should never happen)
if obj['category_id'] != 1:
continue
# ignore objs without keypoints annotation
if max(obj['keypoints']) == 0 and max(obj['foot_kpts']) == 0:
continue
x, y, w, h = obj['bbox']
x1 = np.max((0, x))
y1 = np.max((0, y))
x2 = np.min((img['width'] - 1, x1 + np.max((0, w - 1))))
y2 = np.min((img['height'] - 1, y1 + np.max((0, h - 1))))
# Use only valid bounding boxes
if obj['area'] > 0 and x2 >= x1 and y2 >= y1:
obj['clean_bbox'] = [x1, y1, x2 - x1, y2 - y1]
valid_objs.append(obj)
objs = valid_objs
else:
objs = bboxes[imgId]
# for each annotation of this image, add the formatted annotation to self.data
for obj in objs:
joints = np.zeros((self.num_joints, 2), dtype=np.float)
joints_visibility = np.ones((self.num_joints, 2), dtype=np.float)
# Add foot data to keypoints
obj['keypoints'].extend(obj['foot_kpts'])
if self.use_gt_bboxes:
""" COCO pre-processing
- Moved above
- Skip non-person objects (it should never happen)
if obj['category_id'] != 1:
continue
# ignore objs without keypoints annotation
if max(obj['keypoints']) == 0:
continue
"""
# Not all joints are already present, skip them
vjoints = list(range(self.num_joints))
vjoints.remove(5)
vjoints.remove(14)
for idx, pt in enumerate(vjoints):
if pt == 5 or pt == 14:
continue # Neck and hip are manually filled
joints[pt, 0] = obj['keypoints'][idx * 3 + 0]
joints[pt, 1] = obj['keypoints'][idx * 3 + 1]
t_vis = int(np.clip(obj['keypoints'][idx * 3 + 2], 0, 1))
"""
- COCO:
if visibility == 0 -> keypoint is not in the image.
if visibility == 1 -> keypoint is in the image BUT not visible
(e.g. behind an object).
if visibility == 2 -> keypoint looks clearly
(i.e. it is not hidden).
"""
joints_visibility[pt, 0] = t_vis
joints_visibility[pt, 1] = t_vis
center, scale = self._box2cs(obj['clean_bbox'][:4])
# Add neck and c-hip (check utils/visualization.py for keypoints)
joints[5, 0] = (joints[6, 0] + joints[7, 0]) / 2
joints[5, 1] = (joints[6, 1] + joints[7, 1]) / 2
joints_visibility[5, :] = min(joints_visibility[6, 0],
joints_visibility[7, 0])
joints[14, 0] = (joints[12, 0] + joints[13, 0]) / 2
joints[14, 1] = (joints[12, 1] + joints[13, 1]) / 2
joints_visibility[14, :] = min(joints_visibility[12, 0],
joints_visibility[13, 0])
self.data.append({
'imgId': imgId,
'annId': obj['id'],
'imgPath': f"{self.root_path}/{self.data_version}/{imgId:012d}.jpg",
'center': center,
'scale': scale,
'joints': joints,
'joints_visibility': joints_visibility,
})
# Done check if we need prepare_data -> We should not
print('\nCOCO dataset loaded!')
# Default values
self.bbox_thre = 1.0
self.image_thre = 0.0
self.in_vis_thre = 0.2
self.nms_thre = 1.0
self.oks_thre = 0.9
def __len__(self):
return len(self.data)
def __getitem__(self, index):
# index = 0
joints_data = self.data[index].copy()
# Load image
try:
image = np.array(Image.open(joints_data['imgPath']))
if image.ndim == 2:
# Some images are grayscale and will fail the trasform, convert to RGB
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
except:
raise ValueError(f"Fail to read {joints_data['imgPath']}")
joints = joints_data['joints']
joints_vis = joints_data['joints_visibility']
c = joints_data['center']
s = joints_data['scale']
score = joints_data['score'] if 'score' in joints_data else 1
r = 0
# Apply data augmentation
if self.is_train:
if (self.half_body_prob and random.random() < self.half_body_prob and
np.sum(joints_vis[:, 0]) > self.num_joints_half_body):
c_half_body, s_half_body = self._half_body_transform(joints, joints_vis)
if c_half_body is not None and s_half_body is not None:
c, s = c_half_body, s_half_body
sf = self.scale_factor
rf = self.rotation_factor
if self.scale:
# A random scale factor in [1 - sf, 1 + sf]
s = s * np.clip(random.random() * sf + 1, 1 - sf, 1 + sf)
if self.rotate_prob and random.random() < self.rotate_prob:
# A random rotation factor in [-2 * rf, 2 * rf]
r = np.clip(random.random() * rf, -rf * 2, rf * 2)
else:
r = 0
if self.flip_prob and random.random() < self.flip_prob:
image = image[:, ::-1, :]
joints, joints_vis = fliplr_joints(joints, joints_vis,
image.shape[1],
self.flip_pairs)
c[0] = image.shape[1] - c[0] - 1
# Apply affine transform on joints and image
trans = get_affine_transform(c, s, self.pixel_std, r, self.image_size)
image = cv2.warpAffine(
image,
trans,
(int(self.image_size[0]), int(self.image_size[1])),
flags=cv2.INTER_LINEAR
)
for i in range(self.num_joints):
if joints_vis[i, 0] > 0.:
joints[i, 0:2] = affine_transform(joints[i, 0:2], trans)
# Convert image to tensor and normalize
if self.transform is not None: # I could remove this check
image = self.transform(image)
target, target_weight = self._generate_target(joints, joints_vis)
# Update metadata
joints_data['joints'] = joints
joints_data['joints_visibility'] = joints_vis
joints_data['center'] = c
joints_data['scale'] = s
joints_data['rotation'] = r
joints_data['score'] = score
# from utils.visualization import draw_points_and_skeleton, joints_dict
# image = np.rollaxis(image.detach().cpu().numpy(), 0, 3)
# joints = np.hstack((joints[:, ::-1], joints_vis[:, 0][..., None]))
# image = draw_points_and_skeleton(image.copy(), joints,
# joints_dict()['coco']['skeleton'],
# person_index=0,
# points_color_palette='gist_rainbow',
# skeleton_color_palette='jet',
# points_palette_samples=10,
# confidence_threshold=0.4)
# cv2.imshow('', image)
# cv2.waitKey(0)
return image, target.astype(np.float32), target_weight.astype(np.float32), joints_data
# Private methods
def _box2cs(self, box):
x, y, w, h = box[:4]
return self._xywh2cs(x, y, w, h)
def _xywh2cs(self, x, y, w, h):
center = np.zeros((2,), dtype=np.float32)
center[0] = x + w * 0.5
center[1] = y + h * 0.5
if w > self.aspect_ratio * h:
h = w * 1.0 / self.aspect_ratio
elif w < self.aspect_ratio * h:
w = h * self.aspect_ratio
scale = np.array(
[w * 1.0 / self.pixel_std, h * 1.0 / self.pixel_std],
dtype=np.float32)
if center[0] != -1:
scale = scale * 1.25
return center, scale
def _half_body_transform(self, joints, joints_vis):
upper_joints = []
lower_joints = []
for joint_id in range(self.num_joints):
if joints_vis[joint_id][0] > 0:
if joint_id in self.upper_body_ids:
upper_joints.append(joints[joint_id])
else:
lower_joints.append(joints[joint_id])
if random.random() < 0.5 and len(upper_joints) > 2:
selected_joints = upper_joints
else:
selected_joints = lower_joints \
if len(lower_joints) > 2 else upper_joints
if len(selected_joints) < 2:
return None, None
selected_joints = np.array(selected_joints, dtype=np.float32)
center = selected_joints.mean(axis=0)[:2]
left_top = np.amin(selected_joints, axis=0)
right_bottom = np.amax(selected_joints, axis=0)
w = right_bottom[0] - left_top[0]
h = right_bottom[1] - left_top[1]
if w > self.aspect_ratio * h:
h = w * 1.0 / self.aspect_ratio
elif w < self.aspect_ratio * h:
w = h * self.aspect_ratio
scale = np.array(
[
w * 1.0 / self.pixel_std,
h * 1.0 / self.pixel_std
],
dtype=np.float32
)
scale = scale * 1.5
return center, scale
def _generate_target(self, joints, joints_vis):
"""
:param joints: [num_joints, 2]
:param joints_vis: [num_joints, 2]
:return: target, target_weight(1: visible, 0: invisible)
"""
target_weight = np.ones((self.num_joints, 1), dtype=np.float32)
target_weight[:, 0] = joints_vis[:, 0]
if self.heatmap_type == 'gaussian':
target = np.zeros((self.num_joints,
self.heatmap_size[1],
self.heatmap_size[0]),
dtype=np.float32)
tmp_size = self.heatmap_sigma * 3
for joint_id in range(self.num_joints):
feat_stride = np.asarray(self.image_size) / np.asarray(self.heatmap_size)
mu_x = int(joints[joint_id][0] / feat_stride[0] + 0.5)
mu_y = int(joints[joint_id][1] / feat_stride[1] + 0.5)
# Check that any part of the gaussian is in-bounds
ul = [int(mu_x - tmp_size), int(mu_y - tmp_size)]
br = [int(mu_x + tmp_size + 1), int(mu_y + tmp_size + 1)]
if ul[0] >= self.heatmap_size[0] or ul[1] >= self.heatmap_size[1] \
or br[0] < 0 or br[1] < 0:
# If not, just return the image as is
target_weight[joint_id] = 0
continue
# # Generate gaussian
size = 2 * tmp_size + 1
x = np.arange(0, size, 1, np.float32)
y = x[:, np.newaxis]
x0 = y0 = size // 2
# The gaussian is not normalized, we want the center value to equal 1
g = np.exp(- ((x - x0) ** 2 + (y - y0) ** 2) / (2 * self.heatmap_sigma ** 2))
# Usable gaussian range
g_x = max(0, -ul[0]), min(br[0], self.heatmap_size[0]) - ul[0]
g_y = max(0, -ul[1]), min(br[1], self.heatmap_size[1]) - ul[1]
# Image range
img_x = max(0, ul[0]), min(br[0], self.heatmap_size[0])
img_y = max(0, ul[1]), min(br[1], self.heatmap_size[1])
v = target_weight[joint_id]
if v > 0.5:
target[joint_id][img_y[0]:img_y[1], img_x[0]:img_x[1]] = \
g[g_y[0]:g_y[1], g_x[0]:g_x[1]]
else:
raise NotImplementedError
if self.use_different_joints_weight:
target_weight = np.multiply(target_weight, self.joints_weight)
return target, target_weight
def _write_coco_keypoint_results(self, keypoints, res_file):
data_pack = [
{
'cat_id': 1, # 1 == 'person'
'cls': 'person',
'ann_type': 'keypoints',
'keypoints': keypoints
}
]
results = self._coco_keypoint_results_one_category_kernel(data_pack[0])
with open(res_file, 'w') as f:
json.dump(results, f, sort_keys=True, indent=4)
try:
json.load(open(res_file))
except Exception:
content = []
with open(res_file, 'r') as f:
for line in f:
content.append(line)
content[-1] = ']'
with open(res_file, 'w') as f:
for c in content:
f.write(c)
def _coco_keypoint_results_one_category_kernel(self, data_pack):
cat_id = data_pack['cat_id']
keypoints = data_pack['keypoints']
cat_results = []
for img_kpts in keypoints:
if len(img_kpts) == 0:
continue
_key_points = np.array([img_kpts[k]['keypoints'] for k in range(len(img_kpts))], dtype=np.float32)
key_points = np.zeros((_key_points.shape[0], self.num_joints * 3), dtype=np.float32)
for ipt in range(self.num_joints):
key_points[:, ipt * 3 + 0] = _key_points[:, ipt, 0]
key_points[:, ipt * 3 + 1] = _key_points[:, ipt, 1]
key_points[:, ipt * 3 + 2] = _key_points[:, ipt, 2] # keypoints score.
result = [
{
'image_id': img_kpts[k]['image'],
'category_id': cat_id,
'keypoints': list(key_points[k]),
'score': img_kpts[k]['score'].astype(np.float32),
'center': list(img_kpts[k]['center']),
'scale': list(img_kpts[k]['scale'])
}
for k in range(len(img_kpts))
]
cat_results.extend(result)
return cat_results
if __name__ == '__main__':
# from skimage import io
coco = COCODataset(root_path=f"{os.path.dirname(__file__)}/COCO", data_version="traincoex", rotate_prob=0., half_body_prob=0.)
item = coco[1]
# io.imsave("tmp.jpg", item[0].permute(1,2,0).numpy())
print()
print(item[1].shape)
print('ok!!')
# img = np.clip(np.transpose(item[0].numpy(), (1, 2, 0))[:, :, ::-1] * np.asarray([0.229, 0.224, 0.225]) +
# np.asarray([0.485, 0.456, 0.406]), 0, 1) * 255
# cv2.imwrite('./tmp.png', img.astype(np.uint8))
# print(item[-1])
pass
|