Spaces:
Running
on
Zero
Running
on
Zero
# From https://github.com/Fanghua-Yu/SUPIR/blob/master/SUPIR/modules/SUPIR_v0.py | |
import torch | |
import torch as th | |
import torch.nn as nn | |
class GroupNorm32(nn.GroupNorm): | |
def forward(self, x): | |
# return super().forward(x.float()).type(x.dtype) | |
return super().forward(x) | |
def normalization(channels): | |
""" | |
Make a standard normalization layer. | |
:param channels: number of input channels. | |
:return: an nn.Module for normalization. | |
""" | |
return GroupNorm32(32, channels) | |
def zero_module(module): | |
""" | |
Zero out the parameters of a module and return it. | |
""" | |
for p in module.parameters(): | |
p.detach().zero_() | |
return module | |
def conv_nd(dims, *args, **kwargs): | |
""" | |
Create a 1D, 2D, or 3D convolution module. | |
""" | |
if dims == 1: | |
return nn.Conv1d(*args, **kwargs) | |
elif dims == 2: | |
return nn.Conv2d(*args, **kwargs) | |
elif dims == 3: | |
return nn.Conv3d(*args, **kwargs) | |
raise ValueError(f"unsupported dimensions: {dims}") | |
class ZeroSFT(nn.Module): | |
def __init__(self, label_nc, norm_nc, nhidden=128, norm=True, mask=False, zero_init=True): | |
super().__init__() | |
# param_free_norm_type = str(parsed.group(1)) | |
ks = 3 | |
pw = ks // 2 | |
self.norm = norm | |
if self.norm: | |
self.param_free_norm = normalization(norm_nc) | |
else: | |
self.param_free_norm = nn.Identity() | |
self.mlp_shared = nn.Sequential( | |
nn.Conv2d(label_nc, nhidden, kernel_size=ks, padding=pw), | |
nn.SiLU() | |
) | |
if zero_init: | |
self.zero_mul = zero_module(nn.Conv2d(nhidden, norm_nc, kernel_size=ks, padding=pw)) | |
self.zero_add = zero_module(nn.Conv2d(nhidden, norm_nc, kernel_size=ks, padding=pw)) | |
else: | |
self.zero_mul = nn.Conv2d(nhidden, norm_nc, kernel_size=ks, padding=pw) | |
self.zero_add = nn.Conv2d(nhidden, norm_nc, kernel_size=ks, padding=pw) | |
def forward(self, c, h, control_scale=1): | |
h_raw = h | |
actv = self.mlp_shared(c) | |
gamma = self.zero_mul(actv) | |
beta = self.zero_add(actv) | |
h = self.param_free_norm(h) * (gamma + 1) + beta | |
return h * control_scale + h_raw * (1 - control_scale) |