Spaces:
Running
on
Zero
Running
on
Zero
from typing import Optional, Any | |
from inspect import isfunction | |
import numbers | |
import torch | |
import torch.nn as nn | |
from torch import einsum | |
import torch.nn.functional as F | |
from einops import rearrange, repeat | |
try: | |
import xformers | |
import xformers.ops | |
XFORMERS_IS_AVAILBLE = True | |
except: | |
XFORMERS_IS_AVAILBLE = False | |
print("No module 'xformers'. Proceeding without it.") | |
class Downsample(nn.Module): | |
def __init__(self, in_channels, with_conv): | |
super().__init__() | |
self.with_conv = with_conv | |
if self.with_conv: | |
# no asymmetric padding in torch conv, must do it ourselves | |
self.conv = torch.nn.Conv2d(in_channels, | |
in_channels, | |
kernel_size=3, | |
stride=2, | |
padding=0) | |
def forward(self, x): | |
if self.with_conv: | |
pad = (0,1,0,1) | |
x = torch.nn.functional.pad(x, pad, mode="constant", value=0) | |
x = self.conv(x) | |
else: | |
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) | |
return x | |
def nonlinearity(x): | |
# swish | |
return x*torch.sigmoid(x) | |
def Normalize(in_channels, num_groups=32): | |
return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True) | |
class AttnBlock(nn.Module): | |
def __init__(self, in_channels): | |
super().__init__() | |
self.in_channels = in_channels | |
self.norm = Normalize(in_channels) | |
self.q = torch.nn.Conv2d(in_channels, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
self.k = torch.nn.Conv2d(in_channels, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
self.v = torch.nn.Conv2d(in_channels, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
self.proj_out = torch.nn.Conv2d(in_channels, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
def forward(self, x): | |
h_ = x | |
h_ = self.norm(h_) | |
q = self.q(h_) | |
k = self.k(h_) | |
v = self.v(h_) | |
# compute attention | |
b,c,h,w = q.shape | |
q = q.reshape(b,c,h*w) | |
q = q.permute(0,2,1) # b,hw,c | |
k = k.reshape(b,c,h*w) # b,c,hw | |
w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] | |
w_ = w_ * (int(c)**(-0.5)) | |
w_ = torch.nn.functional.softmax(w_, dim=2) | |
# attend to values | |
v = v.reshape(b,c,h*w) | |
w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q) | |
h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] | |
h_ = h_.reshape(b,c,h,w) | |
h_ = self.proj_out(h_) | |
return x+h_ | |
class MemoryEfficientAttnBlock(nn.Module): | |
""" | |
Uses xformers efficient implementation, | |
see https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223 | |
Note: this is a single-head self-attention operation | |
""" | |
# | |
def __init__(self, in_channels): | |
super().__init__() | |
self.in_channels = in_channels | |
self.norm = Normalize(in_channels) | |
self.q = torch.nn.Conv2d(in_channels, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
self.k = torch.nn.Conv2d(in_channels, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
self.v = torch.nn.Conv2d(in_channels, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
self.proj_out = torch.nn.Conv2d(in_channels, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
self.attention_op: Optional[Any] = None | |
def forward(self, x): | |
h_ = x | |
h_ = self.norm(h_) | |
q = self.q(h_) | |
k = self.k(h_) | |
v = self.v(h_) | |
# compute attention | |
B, C, H, W = q.shape | |
q, k, v = map(lambda x: rearrange(x, 'b c h w -> b (h w) c'), (q, k, v)) | |
q, k, v = map( | |
lambda t: t.unsqueeze(3) | |
.reshape(B, t.shape[1], 1, C) | |
.permute(0, 2, 1, 3) | |
.reshape(B * 1, t.shape[1], C) | |
.contiguous(), | |
(q, k, v), | |
) | |
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op) | |
out = ( | |
out.unsqueeze(0) | |
.reshape(B, 1, out.shape[1], C) | |
.permute(0, 2, 1, 3) | |
.reshape(B, out.shape[1], C) | |
) | |
out = rearrange(out, 'b (h w) c -> b c h w', b=B, h=H, w=W, c=C) | |
out = self.proj_out(out) | |
return x+out | |
def exists(val): | |
return val is not None | |
def zero_module(module): | |
""" | |
Zero out the parameters of a module and return it. | |
""" | |
for p in module.parameters(): | |
p.detach().zero_() | |
return module | |
def default(val, d): | |
if exists(val): | |
return val | |
return d() if isfunction(d) else d | |
class RMSNorm(nn.Module): | |
def __init__(self, dim, eps: float, elementwise_affine: bool = True): | |
super().__init__() | |
self.eps = eps | |
if isinstance(dim, numbers.Integral): | |
dim = (dim,) | |
self.dim = torch.Size(dim) | |
if elementwise_affine: | |
self.weight = nn.Parameter(torch.ones(dim)) | |
else: | |
self.weight = None | |
def forward(self, hidden_states): | |
input_dtype = hidden_states.dtype | |
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) | |
hidden_states = hidden_states * torch.rsqrt(variance + self.eps) | |
if self.weight is not None: | |
# convert into half-precision if necessary | |
if self.weight.dtype in [torch.float16, torch.bfloat16]: | |
hidden_states = hidden_states.to(self.weight.dtype) | |
hidden_states = hidden_states * self.weight | |
else: | |
hidden_states = hidden_states.to(input_dtype) | |
return hidden_states.to(input_dtype) | |
class GEGLU(nn.Module): | |
def __init__(self, dim_in, dim_out): | |
super().__init__() | |
self.proj = nn.Linear(dim_in, dim_out * 2) | |
def forward(self, x): | |
x, gate = self.proj(x).chunk(2, dim=-1) | |
return x * F.gelu(gate) | |
class FeedForward(nn.Module): | |
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.): | |
super().__init__() | |
inner_dim = int(dim * mult) | |
dim_out = default(dim_out, dim) | |
project_in = nn.Sequential( | |
nn.Linear(dim, inner_dim), | |
nn.GELU() | |
) if not glu else GEGLU(dim, inner_dim) | |
self.net = nn.Sequential( | |
project_in, | |
nn.Dropout(dropout), | |
nn.Linear(inner_dim, dim_out) | |
) | |
def forward(self, x): | |
return self.net(x) | |
class CrossAttention(nn.Module): | |
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.): | |
super().__init__() | |
inner_dim = dim_head * heads | |
context_dim = default(context_dim, query_dim) | |
self.scale = dim_head ** -0.5 | |
self.heads = heads | |
self.to_q = nn.Linear(query_dim, inner_dim, bias=False) | |
self.to_k = nn.Linear(context_dim, inner_dim, bias=False) | |
self.to_v = nn.Linear(context_dim, inner_dim, bias=False) | |
self.to_out = nn.Sequential( | |
nn.Linear(inner_dim, query_dim), | |
nn.Dropout(dropout) | |
) | |
def forward(self, x, context=None, mask=None): | |
h = self.heads | |
q = self.to_q(x) | |
context = default(context, x) | |
k = self.to_k(context) | |
v = self.to_v(context) | |
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) | |
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale | |
if exists(mask): | |
mask = rearrange(mask, 'b ... -> b (...)') | |
max_neg_value = -torch.finfo(sim.dtype).max | |
mask = repeat(mask, 'b j -> (b h) () j', h=h) | |
sim.masked_fill_(~mask, max_neg_value) | |
# attention, what we cannot get enough of | |
attn = sim.softmax(dim=-1) | |
out = einsum('b i j, b j d -> b i d', attn, v) | |
out = rearrange(out, '(b h) n d -> b n (h d)', h=h) | |
return self.to_out(out) | |
class MemoryEfficientCrossAttention(nn.Module): | |
# https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223 | |
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0, enable_rmsnorm=False, qk_norm=False): | |
super().__init__() | |
# print(f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using " | |
# f"{heads} heads.") | |
inner_dim = dim_head * heads | |
context_dim = default(context_dim, query_dim) | |
self.heads = heads | |
self.dim_head = dim_head | |
self.to_q = nn.Linear(query_dim, inner_dim, bias=False) | |
self.to_k = nn.Linear(context_dim, inner_dim, bias=False) | |
# if enable_rmsnorm: | |
# self.q_rmsnorm = RMSNorm(query_dim, eps=1e-5) | |
# self.k_rmsnorm = RMSNorm(context_dim, eps=1e-5) | |
self.q_norm = RMSNorm(self.dim_head, elementwise_affine=True, eps=1e-5) if qk_norm else nn.Identity() | |
self.k_norm = RMSNorm(self.dim_head, elementwise_affine=True, eps=1e-5) if qk_norm else nn.Identity() | |
# self.enable_rmsnorm = enable_rmsnorm | |
self.to_v = nn.Linear(context_dim, inner_dim, bias=False) | |
# self.to_k = nn.Linear(context_dim, inner_dim, bias=False) | |
# self.to_v = nn.Linear(context_dim, inner_dim, bias=False) | |
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)) | |
self.attention_op: Optional[Any] = None | |
# self.attention_op: Optional[Any] = MemoryEfficientAttentionFlashAttentionOp | |
def forward(self, x, context=None, mask=None): | |
q = self.to_q(x) | |
context = default(context, x) | |
k = self.to_k(context) | |
v = self.to_v(context) | |
b, _, _ = q.shape | |
q, k, v = map( | |
lambda t: t.unsqueeze(3) | |
.reshape(b, t.shape[1], self.heads, self.dim_head) | |
.permute(0, 2, 1, 3) | |
.reshape(b * self.heads, t.shape[1], self.dim_head) | |
.contiguous(), | |
(q, k, v), | |
) | |
q, k = self.q_norm(q), self.k_norm(k) # for stable amp training | |
# actually compute the attention, what we cannot get enough of | |
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op) | |
if exists(mask): | |
raise NotImplementedError | |
out = ( | |
out.unsqueeze(0) | |
.reshape(b, self.heads, out.shape[1], self.dim_head) | |
.permute(0, 2, 1, 3) | |
.reshape(b, out.shape[1], self.heads * self.dim_head) | |
) | |
return self.to_out(out) | |
class BasicTransformerBlock(nn.Module): | |
ATTENTION_MODES = { | |
"softmax": CrossAttention, # vanilla attention | |
"softmax-xformers": MemoryEfficientCrossAttention | |
} | |
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True, | |
disable_self_attn=False): | |
super().__init__() | |
attn_mode = "softmax-xformers" if XFORMERS_IS_AVAILBLE else "softmax" | |
assert attn_mode in self.ATTENTION_MODES | |
attn_cls = self.ATTENTION_MODES[attn_mode] | |
self.disable_self_attn = disable_self_attn | |
self.attn1 = attn_cls(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout, | |
context_dim=context_dim if self.disable_self_attn else None) # is a self-attention if not self.disable_self_attn | |
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) | |
self.attn2 = attn_cls(query_dim=dim, context_dim=context_dim, | |
heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none | |
self.norm1 = nn.LayerNorm(dim) | |
self.norm2 = nn.LayerNorm(dim) | |
self.norm3 = nn.LayerNorm(dim) | |
self.checkpoint = checkpoint | |
def forward(self, x, context=None): | |
# return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint) | |
return self._forward(x, context) | |
def _forward(self, x, context=None): | |
x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x | |
x = self.attn2(self.norm2(x), context=context) + x | |
x = self.ff(self.norm3(x)) + x | |
return x | |
class BasicTransformerBlock3D(BasicTransformerBlock): | |
def forward(self, x, context=None, num_frames=1): | |
# return checkpoint(self._forward, (x, context, num_frames), self.parameters(), self.checkpoint) | |
return self._forward(x, context, num_frames) # , self.parameters(), self.checkpoint | |
def _forward(self, x, context=None, num_frames=1): | |
x = rearrange(x, "(b f) l c -> b (f l) c", f=num_frames).contiguous() | |
x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x | |
x = rearrange(x, "b (f l) c -> (b f) l c", f=num_frames).contiguous() | |
x = self.attn2(self.norm2(x), context=context) + x | |
x = self.ff(self.norm3(x)) + x | |
return x | |
class SpatialTransformer3D(nn.Module): | |
''' 3D self-attention ''' | |
def __init__(self, in_channels, n_heads, d_head, | |
depth=1, dropout=0., context_dim=None, | |
disable_self_attn=False, use_linear=False, | |
use_checkpoint=True): | |
super().__init__() | |
if exists(context_dim) and not isinstance(context_dim, list): | |
context_dim = [context_dim] | |
elif context_dim is None: | |
context_dim = [None] * depth | |
self.in_channels = in_channels | |
inner_dim = n_heads * d_head | |
self.norm = Normalize(in_channels) | |
if not use_linear: | |
self.proj_in = nn.Conv2d(in_channels, | |
inner_dim, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
else: | |
self.proj_in = nn.Linear(in_channels, inner_dim) | |
self.transformer_blocks = nn.ModuleList( | |
[BasicTransformerBlock3D(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d], | |
disable_self_attn=disable_self_attn, checkpoint=use_checkpoint) | |
for d in range(depth)] | |
) | |
if not use_linear: | |
self.proj_out = zero_module(nn.Conv2d(inner_dim, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0)) | |
else: | |
self.proj_out = zero_module(nn.Linear(in_channels, inner_dim)) | |
self.use_linear = use_linear | |
def forward(self, x, context=None, num_frames=1): | |
# note: if no context is given, cross-attention defaults to self-attention | |
if not isinstance(context, list): | |
context = [context] | |
b, c, h, w = x.shape | |
x_in = x | |
x = self.norm(x) | |
if not self.use_linear: | |
x = self.proj_in(x) | |
x = rearrange(x, 'b c h w -> b (h w) c').contiguous() | |
if self.use_linear: | |
x = self.proj_in(x) | |
for i, block in enumerate(self.transformer_blocks): | |
x = block(x, context=context[i], num_frames=num_frames) | |
if self.use_linear: | |
x = self.proj_out(x) | |
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous() | |
if not self.use_linear: | |
x = self.proj_out(x) | |
return x + x_in | |
def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None): | |
assert attn_type in ["vanilla", "vanilla-xformers", "memory-efficient-cross-attn", "linear", "none", "mv-vanilla"], f'attn_type {attn_type} unknown' | |
if XFORMERS_IS_AVAILBLE and attn_type == "vanilla": | |
attn_type = "vanilla-xformers" | |
# print(f"making attention of type '{attn_type}' with {in_channels} in_channels") | |
if attn_type == "vanilla": | |
assert attn_kwargs is None | |
return AttnBlock(in_channels) | |
elif attn_type == "mv-vanilla": | |
assert attn_kwargs is not None | |
return SpatialTransformer3D(in_channels, **attn_kwargs) | |
elif attn_type == "vanilla-xformers": | |
print(f"building MemoryEfficientAttnBlock with {in_channels} in_channels...") | |
return MemoryEfficientAttnBlock(in_channels) | |
elif attn_type == "none": | |
return nn.Identity(in_channels) | |
else: | |
raise NotImplementedError() | |
class ResnetBlock(nn.Module): | |
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, | |
dropout, temb_channels=0): | |
super().__init__() | |
self.in_channels = in_channels | |
out_channels = in_channels if out_channels is None else out_channels | |
self.out_channels = out_channels | |
self.use_conv_shortcut = conv_shortcut | |
self.norm1 = Normalize(in_channels) | |
self.conv1 = torch.nn.Conv2d(in_channels, | |
out_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
if temb_channels > 0: | |
self.temb_proj = torch.nn.Linear(temb_channels, | |
out_channels) | |
self.norm2 = Normalize(out_channels) | |
self.dropout = torch.nn.Dropout(dropout) | |
self.conv2 = torch.nn.Conv2d(out_channels, | |
out_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
if self.in_channels != self.out_channels: | |
if self.use_conv_shortcut: | |
self.conv_shortcut = torch.nn.Conv2d(in_channels, | |
out_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
else: | |
self.nin_shortcut = torch.nn.Conv2d(in_channels, | |
out_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
def forward(self, x, temb=None): | |
h = x | |
h = self.norm1(h) | |
h = nonlinearity(h) | |
h = self.conv1(h) | |
if temb is not None: | |
h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None] | |
h = self.norm2(h) | |
h = nonlinearity(h) | |
h = self.dropout(h) | |
h = self.conv2(h) | |
if self.in_channels != self.out_channels: | |
if self.use_conv_shortcut: | |
x = self.conv_shortcut(x) | |
else: | |
x = self.nin_shortcut(x) | |
return x+h | |
class Encoder(nn.Module): | |
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, | |
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, | |
resolution, | |
z_channels, double_z=True, | |
use_linear_attn=False, attn_type="vanilla", | |
attn_kwargs={}, | |
z_downsample_size=1, | |
**ignore_kwargs): | |
super().__init__() | |
if use_linear_attn: attn_type = "linear" | |
self.ch = ch | |
self.temb_ch = 0 | |
self.num_resolutions = len(ch_mult) | |
self.num_res_blocks = num_res_blocks | |
self.resolution = resolution | |
self.in_channels = in_channels | |
# downsampling | |
self.conv_in = torch.nn.Conv2d(in_channels, | |
self.ch, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
curr_res = resolution | |
in_ch_mult = (1,)+tuple(ch_mult) | |
self.in_ch_mult = in_ch_mult | |
self.down = nn.ModuleList() | |
for i_level in range(self.num_resolutions): | |
block = nn.ModuleList() | |
attn = nn.ModuleList() | |
block_in = ch*in_ch_mult[i_level] | |
block_out = ch*ch_mult[i_level] | |
for i_block in range(self.num_res_blocks): | |
block.append(ResnetBlock(in_channels=block_in, | |
out_channels=block_out, | |
temb_channels=self.temb_ch, | |
dropout=dropout)) | |
block_in = block_out | |
if curr_res in attn_resolutions: | |
attn.append(make_attn(block_in, attn_type=attn_type, attn_kwargs=attn_kwargs)) | |
down = nn.Module() | |
down.block = block | |
down.attn = attn | |
if i_level != self.num_resolutions-1: | |
down.downsample = Downsample(block_in, resamp_with_conv) | |
curr_res = curr_res // 2 | |
self.down.append(down) | |
# middle | |
self.mid = nn.Module() | |
self.mid.block_1 = ResnetBlock(in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout) | |
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type, attn_kwargs=attn_kwargs) | |
self.mid.block_2 = ResnetBlock(in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout) | |
# end | |
self.norm_out = Normalize(block_in) | |
self.conv_out = torch.nn.Conv2d(block_in, | |
2*z_channels if double_z else z_channels, | |
kernel_size=3, | |
stride=z_downsample_size, | |
padding=1) | |
def forward(self, x, **kwargs): | |
# timestep embedding | |
temb = None | |
# downsampling | |
h = self.conv_in(x) | |
for i_level in range(self.num_resolutions): | |
for i_block in range(self.num_res_blocks): | |
h = self.down[i_level].block[i_block](h, temb) | |
if len(self.down[i_level].attn) > 0: | |
h = self.down[i_level].attn[i_block](h) | |
if i_level != self.num_resolutions-1: | |
h = (self.down[i_level].downsample(h)) | |
# middle | |
h = self.mid.block_1(h, temb) | |
h = self.mid.attn_1(h, **kwargs) | |
h = self.mid.block_2(h, temb) | |
# end | |
h = self.norm_out(h) | |
h = nonlinearity(h) | |
h = self.conv_out(h) | |
return h | |
class MVEncoder(Encoder): | |
def __init__(self, *, ch, out_ch, ch_mult=(1, 2, 4, 8), num_res_blocks, attn_resolutions, dropout=0, resamp_with_conv=True, in_channels, resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="mv-vanilla", z_downsample_size=1, **ignore_kwargs): | |
super().__init__(ch=ch, out_ch=out_ch, ch_mult=ch_mult, num_res_blocks=num_res_blocks, attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv, in_channels=in_channels, resolution=resolution, z_channels=z_channels, double_z=double_z, use_linear_attn=use_linear_attn, attn_type=attn_type, | |
z_downsample_size=z_downsample_size, | |
add_fusion_layer=False, | |
**ignore_kwargs) | |
def forward(self, x, n_views): | |
return super().forward(x, num_frames=n_views) |