3DEnhancer / app.py
Luo-Yihang's picture
initial code
4c35d22
raw
history blame
21.5 kB
import warnings
warnings.filterwarnings('ignore')
import spaces
import os
import tyro
import imageio
import numpy as np
import tqdm
import cv2
import torch
import torch.nn.functional as F
from torchvision import transforms as T
import torchvision.transforms.functional as TF
from safetensors.torch import load_file
import kiui
from kiui.op import recenter
from kiui.cam import orbit_camera
import rembg
import gradio as gr
from gradio_imageslider import ImageSlider
import sys
sys.path.insert(0, "src")
from src.enhancer import Enhancer
from src.utils.camera import get_c2ws
# import LGM
sys.path.insert(0, "extern/LGM")
from core.options import AllConfigs
from core.models import LGM
from mvdream.pipeline_mvdream import MVDreamPipeline
# download checkpoints
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="ashawkey/LGM", filename="model_fp16_fixrot.safetensors", local_dir='pretrained_models/LGM')
hf_hub_download(repo_id="Luo-Yihang/3DEnhancer", filename="model.safetensors", local_dir='pretrained_models/3DEnhancer')
### Title and Description ###
#### Description ####
title = r"""<h1 align="center">3DEnhancer: Consistent Multi-View Diffusion for 3D Enhancement</h1>"""
important_link = r"""
<div align='center'>
<a href='https://arxiv.org/abs/2412.18565'>[arxiv]</a>
&ensp; <a href='https://Luo-Yihang.github.io/projects/3DEnhancer'>[Project Page]</a>
&ensp; <a href='https://github.com/Luo-Yihang/3DEnhancer'>[Code]</a>
</div>
"""
authors = r"""
<div align='center'>
<a href='https://github.com/Luo-Yihang'>Yihang Luo</a>
&ensp; <a href='https://shangchenzhou.com/'>Shangchen Zhou</a>
&ensp; <a href='https://nirvanalan.github.io/'>Yushi Lan</a>
&ensp; <a href='https://xingangpan.github.io/'>Xingang Pan</a>
&ensp; <a href='https://www.mmlab-ntu.com/person/ccloy/index.html'>Chen Change Loy</a>
</div>
"""
affiliation = r"""
<div align='center'>
<a href='https://www.mmlab-ntu.com/'>S-Lab, NTU Singapore</a>
</div>
"""
description = r"""
<b>Official Gradio demo</b> for <a href='https://yihangluo.com/projects/3DEnhancer' target='_blank'><b>3DEnhancer: Consistent Multi-View Diffusion for 3D Enhancement</b></a>.<br>
πŸ”₯ 3DEnhancer employs a multi-view diffusion model to enhance multi-view images, thus improving 3D models. Our contributions include a robust data augmentation pipeline, and the view-consistent blocks that integrate multi-view row attention and near-view epipolar aggregation modules to promote view consistency. <br>
"""
article = r"""
<br>If 3DEnhancer is helpful, please help to ⭐ the <a href='https://github.com/Luo-Yihang/3DEnhancer' target='_blank'>Github Repo</a>. Thanks!
[![GitHub Stars](https://img.shields.io/github/stars/Luo-Yihang/3DEnhancer)](https://github.com/Luo-Yihang/3DEnhancer)
---
πŸ“ **License**
<br>
This project is licensed under <a href="https://github.com/Luo-Yihang/3DEnhancer/blob/main/LICENSE">S-Lab License 1.0</a>,
Redistribution and use for non-commercial purposes should follow this license.
<br>
πŸ“ **Citation**
<br>
If our work is useful for your research, please consider citing:
```bibtex
@article{luo20243denhancer,
title={3DEnhancer: Consistent Multi-View Diffusion for 3D Enhancement},
author={Yihang Luo and Shangchen Zhou and Yushi Lan and Xingang Pan and Chen Change Loy},
booktitle={arXiv preprint arXiv:2412.18565}
year={2024},
}
```
πŸ“§ **Contact**
<br>
If you have any questions, please feel free to reach me out at <b>[email protected]</b>.
"""
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
BASE_SAVE_PATH = 'gradio_results'
GRADIO_VIDEO_PATH = f'{BASE_SAVE_PATH}/gradio_output.mp4'
GRADIO_PLY_PATH = f'{BASE_SAVE_PATH}/gradio_output.ply'
GRADIO_ENHANCED_VIDEO_PATH = f'{BASE_SAVE_PATH}/gradio_enhanced_output.mp4'
GRADIO_ENHANCED_PLY_PATH = f'{BASE_SAVE_PATH}/gradio_enhanced_output.ply'
DEFAULT_NEG_PROMPT = "ugly, blurry, pixelated obscure, unnatural colors, poor lighting, dull, unclear, cropped, lowres, low quality, artifacts, duplicate"
DEFAULT_SEED = 0
os.makedirs(BASE_SAVE_PATH, exist_ok=True)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# load dreams
pipe_text = MVDreamPipeline.from_pretrained(
'ashawkey/mvdream-sd2.1-diffusers', # remote weights
torch_dtype=torch.float16,
trust_remote_code=True
)
pipe_text = pipe_text.to(device)
pipe_image = MVDreamPipeline.from_pretrained(
"ashawkey/imagedream-ipmv-diffusers", # remote weights
torch_dtype=torch.float16,
trust_remote_code=True
)
pipe_image = pipe_image.to(device)
# load lgm
lgm_opt = tyro.cli(AllConfigs, args=["big"])
tan_half_fov = np.tan(0.5 * np.deg2rad(lgm_opt.fovy))
proj_matrix = torch.zeros(4, 4, dtype=torch.float32, device=device)
proj_matrix[0, 0] = 1 / tan_half_fov
proj_matrix[1, 1] = 1 / tan_half_fov
proj_matrix[2, 2] = (lgm_opt.zfar + lgm_opt.znear) / (lgm_opt.zfar - lgm_opt.znear)
proj_matrix[3, 2] = - (lgm_opt.zfar * lgm_opt.znear) / (lgm_opt.zfar - lgm_opt.znear)
proj_matrix[2, 3] = 1
lgm_model = LGM(lgm_opt)
lgm_model = lgm_model.half().to(device)
ckpt = load_file("pretrained_models/LGM/model_fp16_fixrot.safetensors", device='cpu')
lgm_model.load_state_dict(ckpt, strict=False)
lgm_model.eval()
# load 3denhancer
enhancer = Enhancer(
model_path = "pretrained_models/3DEnhancer/model.safetensors",
config_path = "src/configs/config.py",
)
# load rembg
bg_remover = rembg.new_session()
@torch.no_grad()
@spaces.GPU
def gen_mv(ref_image, ref_text):
kiui.seed_everything(DEFAULT_SEED)
# text-conditioned
if ref_image is None:
mv_image_uint8 = pipe_text(ref_text, negative_prompt=DEFAULT_NEG_PROMPT, num_inference_steps=30, guidance_scale=7.5, elevation=0)
mv_image_uint8 = (mv_image_uint8 * 255).astype(np.uint8)
# bg removal
mv_image = []
for i in range(4):
image = rembg.remove(mv_image_uint8[i], session=bg_remover) # [H, W, 4]
# to white bg
image = image.astype(np.float32) / 255
image = recenter(image, image[..., 0] > 0, border_ratio=0.2)
image = image[..., :3] * image[..., -1:] + (1 - image[..., -1:])
mv_image.append(image)
# image-conditioned (may also input text, but no text usually works too)
else:
ref_image = np.array(ref_image) # uint8
# bg removal
carved_image = rembg.remove(ref_image, session=bg_remover) # [H, W, 4]
mask = carved_image[..., -1] > 0
image = recenter(carved_image, mask, border_ratio=0.2)
image = image.astype(np.float32) / 255.0
image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4])
mv_image = pipe_image(ref_text, image, negative_prompt=DEFAULT_NEG_PROMPT, num_inference_steps=30, guidance_scale=5.0, elevation=0)
# mv_image, a list of 4 np_arrays in shape (256, 256, 3) in range (0.0, 1.0)
mv_image_512 = []
for i in range(len(mv_image)):
mv_image_512.append(cv2.resize(mv_image[i], (512, 512), interpolation=cv2.INTER_LINEAR))
return mv_image_512[0], mv_image_512[1], mv_image_512[2], mv_image_512[3], ref_text, 120
@torch.no_grad()
@spaces.GPU
def gen_3d(image_0, image_1, image_2, image_3, elevation, output_video_path, output_ply_path):
kiui.seed_everything(DEFAULT_SEED)
mv_image = [image_0, image_1, image_2, image_3]
for i in range(len(mv_image)):
if type(mv_image[i]) is tuple:
mv_image[i] = mv_image[i][1]
mv_image[i] = np.array(mv_image[i]).astype(np.float32) / 255.0
mv_image[i] = cv2.resize(mv_image[i], (256, 256), interpolation=cv2.INTER_AREA)
# generate gaussians
input_image = np.stack([mv_image[1], mv_image[2], mv_image[3], mv_image[0]], axis=0) # [4, 256, 256, 3], float32
input_image = torch.from_numpy(input_image).permute(0, 3, 1, 2).float().to(device) # [4, 3, 256, 256]
input_image = F.interpolate(input_image, size=(lgm_opt.input_size, lgm_opt.input_size), mode='bilinear', align_corners=False)
input_image = TF.normalize(input_image, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)
rays_embeddings = lgm_model.prepare_default_rays(device, elevation=elevation)
input_image = torch.cat([input_image, rays_embeddings], dim=1).unsqueeze(0) # [1, 4, 9, H, W]
with torch.no_grad():
with torch.autocast(device_type='cuda', dtype=torch.float16):
# generate gaussians
gaussians = lgm_model.forward_gaussians(input_image)
lgm_model.gs.save_ply(gaussians, output_ply_path)
# render 360 video
images = []
elevation = 0
if lgm_opt.fancy_video:
azimuth = np.arange(0, 720, 4, dtype=np.int32)
for azi in tqdm.tqdm(azimuth):
cam_poses = torch.from_numpy(orbit_camera(elevation, azi, radius=lgm_opt.cam_radius, opengl=True)).unsqueeze(0).to(device)
cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction
# cameras needed by gaussian rasterizer
cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4]
cam_view_proj = cam_view @ proj_matrix # [V, 4, 4]
cam_pos = - cam_poses[:, :3, 3] # [V, 3]
scale = min(azi / 360, 1)
image = lgm_model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), scale_modifier=scale)['image']
images.append((image.squeeze(1).permute(0,2,3,1).contiguous().float().cpu().numpy() * 255).astype(np.uint8))
else:
azimuth = np.arange(0, 360, 2, dtype=np.int32)
for azi in tqdm.tqdm(azimuth):
cam_poses = torch.from_numpy(orbit_camera(elevation, azi, radius=lgm_opt.cam_radius, opengl=True)).unsqueeze(0).to(device)
cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction
# cameras needed by gaussian rasterizer
cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4]
cam_view_proj = cam_view @ proj_matrix # [V, 4, 4]
cam_pos = - cam_poses[:, :3, 3] # [V, 3]
image = lgm_model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), scale_modifier=1)['image']
images.append((image.squeeze(1).permute(0,2,3,1).contiguous().float().cpu().numpy() * 255).astype(np.uint8))
images = np.concatenate(images, axis=0)
imageio.mimwrite(output_video_path, images, fps=30)
return output_video_path, output_ply_path
@torch.no_grad()
@spaces.GPU
def enhance(image_0, image_1, image_2, image_3, prompt, elevation, noise_level, cfg_scale, steps, seed, color_shift):
kiui.seed_everything(seed)
mv_image = [image_0, image_1, image_2, image_3]
img_tensor_list = []
for image in mv_image:
img_tensor_list.append(T.ToTensor()(image))
img_tensors = torch.stack(img_tensor_list)
color_shift = None if color_shift=="disabled" else color_shift
output_img_tensors = enhancer.inference(
mv_imgs=img_tensors,
c2ws=get_c2ws(elevations=[elevation]*4, amuziths=[0,90,180,270]),
prompt=prompt,
noise_level=noise_level,
cfg_scale=cfg_scale,
sample_steps=steps,
color_shift=color_shift,
)
mv_image_512 = output_img_tensors.permute(0,2,3,1).cpu().numpy()
# return to the image slider component
return (image_0, mv_image_512[0]), (image_1, mv_image_512[1]), (image_2, mv_image_512[2]), (image_3, mv_image_512[3])
def check_video(input_video):
if input_video:
return gr.update(interactive=True)
return gr.update(interactive=False)
i2mv_examples = [
["assets/examples/i2mv/cake.png", "cake"],
["assets/examples/i2mv/skull.png", "skull"],
["assets/examples/i2mv/sea_turtle.png", "sea turtle"],
["assets/examples/i2mv/house2.png", "house"],
["assets/examples/i2mv/cup.png", "cup"],
["assets/examples/i2mv/mannequin.png", "mannequin"],
["assets/examples/i2mv/boy.jpg", "boy"],
["assets/examples/i2mv/dragontoy.jpg", "dragon toy"],
["assets/examples/i2mv/gso_rabbit.jpg", "rabbit car"],
["assets/examples/i2mv/Mario_New_Super_Mario_Bros_U_Deluxe.png", "standing Mario"],
]
t2mv_examples = [
"teddy bear",
"hamburger",
"oldman's head sculpture",
"headphone",
"mech suit",
"wooden barrel",
"scary zombie"
]
mv_examples = [
[
"assets/examples/mv_lq_prerendered/vase.mp4",
"assets/examples/mv_lq/vase/00.png",
"assets/examples/mv_lq/vase/01.png",
"assets/examples/mv_lq/vase/02.png",
"assets/examples/mv_lq/vase/03.png",
"vase",
0
],
[
"assets/examples/mv_lq_prerendered/tower.mp4",
"assets/examples/mv_lq/tower/00.png",
"assets/examples/mv_lq/tower/01.png",
"assets/examples/mv_lq/tower/02.png",
"assets/examples/mv_lq/tower/03.png",
"brick tower",
0
],
[
"assets/examples/mv_lq_prerendered/truck.mp4",
"assets/examples/mv_lq/truck/00.png",
"assets/examples/mv_lq/truck/01.png",
"assets/examples/mv_lq/truck/02.png",
"assets/examples/mv_lq/truck/03.png",
"truck",
0
],
[
"assets/examples/mv_lq_prerendered/gascan.mp4",
"assets/examples/mv_lq/gascan/00.png",
"assets/examples/mv_lq/gascan/01.png",
"assets/examples/mv_lq/gascan/02.png",
"assets/examples/mv_lq/gascan/03.png",
"gas can",
0
],
[
"assets/examples/mv_lq_prerendered/fish.mp4",
"assets/examples/mv_lq/fish/00.png",
"assets/examples/mv_lq/fish/01.png",
"assets/examples/mv_lq/fish/02.png",
"assets/examples/mv_lq/fish/03.png",
"sea fish with eyes",
0
],
[
"assets/examples/mv_lq_prerendered/tshirt.mp4",
"assets/examples/mv_lq/tshirt/00.png",
"assets/examples/mv_lq/tshirt/01.png",
"assets/examples/mv_lq/tshirt/02.png",
"assets/examples/mv_lq/tshirt/03.png",
"t-shirt",
0
],
[
"assets/examples/mv_lq_prerendered/turtle.mp4",
"assets/examples/mv_lq/turtle/00.png",
"assets/examples/mv_lq/turtle/01.png",
"assets/examples/mv_lq/turtle/02.png",
"assets/examples/mv_lq/turtle/03.png",
"sea turtle",
200
],
[
"assets/examples/mv_lq_prerendered/cake.mp4",
"assets/examples/mv_lq/cake/00.png",
"assets/examples/mv_lq/cake/01.png",
"assets/examples/mv_lq/cake/02.png",
"assets/examples/mv_lq/cake/03.png",
"cake",
120
],
[
"assets/examples/mv_lq_prerendered/lamp.mp4",
"assets/examples/mv_lq/lamp/00.png",
"assets/examples/mv_lq/lamp/01.png",
"assets/examples/mv_lq/lamp/02.png",
"assets/examples/mv_lq/lamp/03.png",
"lamp",
0
],
[
"assets/examples/mv_lq_prerendered/oldman.mp4",
"assets/examples/mv_lq/oldman/00.png",
"assets/examples/mv_lq/oldman/00.png",
"assets/examples/mv_lq/oldman/00.png",
"assets/examples/mv_lq/oldman/00.png",
"old man sculpture",
120
],
[
"assets/examples/mv_lq_prerendered/mario.mp4",
"assets/examples/mv_lq/mario/00.png",
"assets/examples/mv_lq/mario/01.png",
"assets/examples/mv_lq/mario/02.png",
"assets/examples/mv_lq/mario/03.png",
"standing mario",
120
],
[
"assets/examples/mv_lq_prerendered/house.mp4",
"assets/examples/mv_lq/house/00.png",
"assets/examples/mv_lq/house/01.png",
"assets/examples/mv_lq/house/02.png",
"assets/examples/mv_lq/house/03.png",
"house",
120
],
]
# gradio UI
demo = gr.Blocks().queue()
with demo:
gr.Markdown(title)
gr.Markdown(authors)
gr.Markdown(affiliation)
gr.Markdown(important_link)
gr.Markdown(description)
original_video_path = gr.State(GRADIO_VIDEO_PATH)
original_ply_path = gr.State(GRADIO_PLY_PATH)
enhanced_video_path = gr.State(GRADIO_ENHANCED_VIDEO_PATH)
enhanced_ply_path = gr.State(GRADIO_ENHANCED_PLY_PATH)
with gr.Column(variant='panel'):
with gr.Accordion("Generate Multi Views (LGM)", open=False):
gr.Markdown("*Don't have multi-view images on hand? Generate them here using a single image, text, or a combination of both.*")
with gr.Row():
with gr.Column():
ref_image = gr.Image(label="Reference Image", type='pil', height=400, interactive=True)
ref_text = gr.Textbox(label="Prompt", value="", interactive=True)
with gr.Column():
gr.Examples(
examples=i2mv_examples,
inputs=[ref_image, ref_text],
examples_per_page=3,
label='Image-to-Multiviews Examples',
)
gr.Examples(
examples=t2mv_examples,
inputs=[ref_text],
outputs=[ref_image, ref_text],
cache_examples=False,
run_on_click=True,
fn=lambda x: (None, x),
label='Text-to-Multiviews Examples',
)
with gr.Row():
gr.Column() # Empty column for spacing
button_gen_mv = gr.Button("Generate Multi Views", scale=1)
gr.Column() # Empty column for spacing
with gr.Column():
gr.Markdown("Let's enhance!")
with gr.Row():
with gr.Column(scale=2):
with gr.Tab("Multi Views"):
gr.Markdown("*Upload your multi-view images and enhance them with 3DEnhancer. You can also generate 3D model using LGM.*")
with gr.Row():
input_image_0 = gr.Image(label="[Input] view-0", type='pil', height=320)
input_image_1 = gr.Image(label="[Input] view-1", type='pil', height=320)
input_image_2 = gr.Image(label="[Input] view-2", type='pil', height=320)
input_image_3 = gr.Image(label="[Input] view-3", type='pil', height=320)
gr.Markdown("---")
gr.Markdown("Enhanced Output")
with gr.Row():
enhanced_image_0 = ImageSlider(label="[Enhanced] view-0", type='pil', height=350, interactive=False)
enhanced_image_1 = ImageSlider(label="[Enhanced] view-1", type='pil', height=350, interactive=False)
enhanced_image_2 = ImageSlider(label="[Enhanced] view-2", type='pil', height=350, interactive=False)
enhanced_image_3 = ImageSlider(label="[Enhanced] view-3", type='pil', height=350, interactive=False)
with gr.Tab("Generated 3D"):
gr.Markdown("Coarse Input")
with gr.Column():
with gr.Row():
gr.Column() # Empty column for spacing
with gr.Column():
input_3d_video = gr.Video(label="[Input] Rendered Video", height=300, scale=1, interactive=False)
with gr.Row():
button_gen_3d = gr.Button("Render 3D")
button_download_3d = gr.DownloadButton("Download Ply", interactive=False)
# button_download_3d = gr.File(label="Download Ply", interactive=False, height=50)
gr.Column() # Empty column for spacing
gr.Markdown("---")
gr.Markdown("Enhanced Output")
with gr.Row():
gr.Column() # Empty column for spacing
with gr.Column():
enhanced_3d_video = gr.Video(label="[Enhanced] Rendered Video", height=300, scale=1, interactive=False)
with gr.Row():
enhanced_button_gen_3d = gr.Button("Render 3D")
enhanced_button_download_3d = gr.DownloadButton("Download Ply", interactive=False)
gr.Column() # Empty column for spacing
with gr.Column():
with gr.Row():
enhancer_text = gr.Textbox(label="Prompt", value="", scale=1)
enhancer_noise_level = gr.Slider(label="enhancer noise level", minimum=0, maximum=300, step=1, value=0, interactive=True)
with gr.Accordion("Addvanced Setting", open=False):
with gr.Column():
with gr.Row():
with gr.Column():
elevation = gr.Slider(label="elevation", minimum=-90, maximum=90, step=1, value=0)
cfg_scale = gr.Slider(label="cfg scale", minimum=0, maximum=10, step=0.1, value=4.5)
with gr.Column():
seed = gr.Slider(label="random seed", minimum=0, maximum=100000, step=1, value=0)
steps = gr.Slider(label="inference steps", minimum=1, maximum=100, step=1, value=20)
with gr.Row():
color_shift = gr.Radio(label="color shift", value="disabled", choices=["disabled", "adain", "wavelet"])
with gr.Row():
gr.Column() # Empty column for spacing
button_enhance = gr.Button("Enhance", scale=1, variant="primary")
gr.Column() # Empty column for spacing
gr.Examples(
examples=mv_examples,
inputs=[input_3d_video, input_image_0, input_image_1, input_image_2, input_image_3, enhancer_text, enhancer_noise_level],
examples_per_page=3,
label='Multiviews Examples',
)
gr.Markdown("*Don't have multi-view images on hand but want to generate your own multi-viwes? Generate them in the `Generate Multi Views (LGM)` secction above.*")
gr.Markdown(article)
button_gen_mv.click(
gen_mv,
inputs=[ref_image, ref_text],
outputs=[input_image_0, input_image_1, input_image_2, input_image_3, enhancer_text, enhancer_noise_level]
)
button_gen_3d.click(
gen_3d,
inputs=[input_image_0, input_image_1, input_image_2, input_image_3, elevation, original_video_path, original_ply_path],
outputs=[input_3d_video, button_download_3d]
).success(
lambda: gr.Button(interactive=True),
outputs=[button_download_3d],
)
enhanced_button_gen_3d.click(
gen_3d,
inputs=[enhanced_image_0, enhanced_image_1, enhanced_image_2, enhanced_image_3, elevation, original_video_path, original_ply_path],
outputs=[enhanced_3d_video, enhanced_button_download_3d]
).success(
lambda: gr.Button(interactive=True),
outputs=[enhanced_button_download_3d],
)
button_enhance.click(
enhance,
inputs=[input_image_0, input_image_1, input_image_2, input_image_3, enhancer_text, elevation, enhancer_noise_level, cfg_scale, steps, seed, color_shift],
outputs=[enhanced_image_0, enhanced_image_1, enhanced_image_2, enhanced_image_3]
).success(
gen_3d,
inputs=[input_image_0, input_image_1, input_image_2, input_image_3, elevation, original_video_path, original_ply_path],
outputs=[input_3d_video, button_download_3d]
).success(
lambda: gr.Button(interactive=True),
outputs=[button_download_3d],
).success(
gen_3d,
inputs=[enhanced_image_0, enhanced_image_1, enhanced_image_2, enhanced_image_3, elevation, enhanced_video_path, enhanced_ply_path],
outputs=[enhanced_3d_video, enhanced_button_download_3d]
).success(
lambda: gr.Button(interactive=True),
outputs=[enhanced_button_download_3d],
)
demo.launch()