Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,024 Bytes
4c35d22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
import torch
from kornia.core import Tensor, concatenate
import torch
import math
import numpy as np
from torch import nn
from kiui.cam import orbit_camera
# gaussian splatting utils.graphics_utils
def getWorld2View2(R, t, translate=np.array([.0, .0, .0]), scale=1.0):
Rt = np.zeros((4, 4))
Rt[:3, :3] = R.transpose()
Rt[:3, 3] = t
Rt[3, 3] = 1.0
C2W = np.linalg.inv(Rt)
cam_center = C2W[:3, 3]
cam_center = (cam_center + translate) * scale
C2W[:3, 3] = cam_center
Rt = np.linalg.inv(C2W)
return np.float32(Rt)
def getProjectionMatrix(znear, zfar, fovX, fovY):
tanHalfFovY = math.tan((fovY / 2))
tanHalfFovX = math.tan((fovX / 2))
top = tanHalfFovY * znear
bottom = -top
right = tanHalfFovX * znear
left = -right
P = torch.zeros(4, 4)
z_sign = 1.0
P[0, 0] = 2.0 * znear / (right - left)
P[1, 1] = 2.0 * znear / (top - bottom)
P[0, 2] = (right + left) / (right - left)
P[1, 2] = (top + bottom) / (top - bottom)
P[3, 2] = z_sign
P[2, 2] = z_sign * zfar / (zfar - znear)
P[2, 3] = -(zfar * znear) / (zfar - znear)
return P
def fov2focal(fov, pixels):
return pixels / (2 * math.tan(fov / 2))
def focal2fov(focal, pixels):
return 2*math.atan(pixels/(2*focal))
# gaussian splatting scene.camera
class Camera(nn.Module):
def __init__(self, R, T, FoVx, FoVy,
trans=np.array([0.0, 0.0, 0.0]), scale=1.0
):
super(Camera, self).__init__()
self.R = R
self.T = T
self.FoVx = FoVx
self.FoVy = FoVy
self.zfar = 100.0
self.znear = 0.01
self.trans = trans
self.scale = scale
self.world_view_transform = torch.tensor(getWorld2View2(R, T, trans, scale)).transpose(0, 1)
self.projection_matrix = getProjectionMatrix(znear=self.znear, zfar=self.zfar, fovX=self.FoVx, fovY=self.FoVy).transpose(0,1)
self.full_proj_transform = (self.world_view_transform.unsqueeze(0).bmm(self.projection_matrix.unsqueeze(0))).squeeze(0)
self.camera_center = self.world_view_transform.inverse()[3, :3]
# gaussian splatting utils.camera_utils
def loadCam(c2w, fovx, image_height=512, image_width=512):
# load_camera
w2c = np.linalg.inv(c2w)
R = np.transpose(w2c[:3,:3]) # R is stored transposed due to 'glm' in CUDA code
T = w2c[:3, 3]
fovy = focal2fov(fov2focal(fovx, image_width), image_height)
FovY = fovy
FovX = fovx
return Camera(R=R, T=T,
FoVx=FovX, FoVy=FovY)
# epipolar calculation related
@torch.no_grad()
def fundamental_from_projections(P1: Tensor, P2: Tensor) -> Tensor:
r"""Get the Fundamental matrix from Projection matrices.
Args:
P1: The projection matrix from first camera with shape :math:`(*, 3, 4)`.
P2: The projection matrix from second camera with shape :math:`(*, 3, 4)`.
Returns:
The fundamental matrix with shape :math:`(*, 3, 3)`.
"""
if not (len(P1.shape) >= 2 and P1.shape[-2:] == (3, 4)):
raise AssertionError(P1.shape)
if not (len(P2.shape) >= 2 and P2.shape[-2:] == (3, 4)):
raise AssertionError(P2.shape)
if P1.shape[:-2] != P2.shape[:-2]:
raise AssertionError
def vstack(x: Tensor, y: Tensor) -> Tensor:
return concatenate([x, y], dim=-2)
X1 = P1[..., 1:, :]
X2 = vstack(P1[..., 2:3, :], P1[..., 0:1, :])
X3 = P1[..., :2, :]
Y1 = P2[..., 1:, :]
Y2 = vstack(P2[..., 2:3, :], P2[..., 0:1, :])
Y3 = P2[..., :2, :]
X1Y1, X2Y1, X3Y1 = vstack(X1, Y1), vstack(X2, Y1), vstack(X3, Y1)
X1Y2, X2Y2, X3Y2 = vstack(X1, Y2), vstack(X2, Y2), vstack(X3, Y2)
X1Y3, X2Y3, X3Y3 = vstack(X1, Y3), vstack(X2, Y3), vstack(X3, Y3)
F_vec = torch.cat(
[
X1Y1.det().reshape(-1, 1),
X2Y1.det().reshape(-1, 1),
X3Y1.det().reshape(-1, 1),
X1Y2.det().reshape(-1, 1),
X2Y2.det().reshape(-1, 1),
X3Y2.det().reshape(-1, 1),
X1Y3.det().reshape(-1, 1),
X2Y3.det().reshape(-1, 1),
X3Y3.det().reshape(-1, 1),
],
dim=1,
)
return F_vec.view(*P1.shape[:-2], 3, 3)
def get_fundamental_matrix_with_H(cam1, cam2, current_H, current_W):
NDC_2_pixel = torch.tensor([[current_W / 2, 0, current_W / 2], [0, current_H / 2, current_H / 2], [0, 0, 1]])
# NDC_2_pixel_inversed = torch.inverse(NDC_2_pixel)
NDC_2_pixel = NDC_2_pixel.float()
cam_1_tranformation = cam1.full_proj_transform[:, [0,1,3]].T.float()
cam_2_tranformation = cam2.full_proj_transform[:, [0,1,3]].T.float()
cam_1_pixel = NDC_2_pixel@cam_1_tranformation
cam_2_pixel = NDC_2_pixel@cam_2_tranformation
# print(NDC_2_pixel.dtype, cam_1_tranformation.dtype, cam_2_tranformation.dtype, cam_1_pixel.dtype, cam_2_pixel.dtype)
cam_1_pixel = cam_1_pixel.float()
cam_2_pixel = cam_2_pixel.float()
# print("cam_1", cam_1_pixel.dtype, cam_1_pixel.shape)
# print("cam_2", cam_2_pixel.dtype, cam_2_pixel.shape)
# print(NDC_2_pixel@cam_1_tranformation, NDC_2_pixel@cam_2_tranformation)
return fundamental_from_projections(cam_1_pixel, cam_2_pixel)
def point_to_line_dist(points, lines):
"""
Calculate the distance from points to lines in 2D.
points: Nx3
lines: Mx3
return distance: NxM
"""
numerator = torch.abs(lines @ points.T)
denominator = torch.linalg.norm(lines[:,:2], dim=1, keepdim=True)
return numerator / denominator
def compute_epipolar_constrains(cam1, cam2, current_H=64, current_W=64):
n_frames = 1
# sequence_length = current_W * current_H
fundamental_matrix_1 = []
fundamental_matrix_1.append(get_fundamental_matrix_with_H(cam1, cam2, current_H, current_W))
fundamental_matrix_1 = torch.stack(fundamental_matrix_1, dim=0)
x = torch.arange(current_W)
y = torch.arange(current_H)
x, y = torch.meshgrid(x, y, indexing='xy')
x = x.reshape(-1)
y = y.reshape(-1)
heto_cam2 = torch.stack([x, y, torch.ones(size=(len(x),))], dim=1).view(-1, 3)
heto_cam1 = torch.stack([x, y, torch.ones(size=(len(x),))], dim=1).view(-1, 3)
# epipolar_line: n_frames X seq_len, 3
line1 = (heto_cam2.unsqueeze(0).repeat(n_frames, 1, 1) @ fundamental_matrix_1).view(-1, 3)
distance1 = point_to_line_dist(heto_cam1, line1)
idx1_epipolar = distance1 > 1 # sequence_length x sequence_lengths
return idx1_epipolar
def compute_camera_distance(cams, key_cams):
cam_centers = [cam.camera_center for cam in cams]
key_cam_centers = [cam.camera_center for cam in key_cams]
cam_centers = torch.stack(cam_centers)
key_cam_centers = torch.stack(key_cam_centers)
cam_distance = torch.cdist(cam_centers, key_cam_centers)
return cam_distance
def get_intri(target_im=None, h=None, w=None, normalize=False):
if target_im is None:
assert (h is not None and w is not None)
else:
h, w = target_im.shape[:2]
fx = fy = 1422.222
res_raw = 1024
f_x = f_y = fx * h / res_raw
K = np.array([f_x, 0, w / 2, 0, f_y, h / 2, 0, 0, 1]).reshape(3, 3)
if normalize: # center is [0.5, 0.5], eg3d renderer tradition
K[:2] /= h
return K
def normalize_camera(c, c_frame0):
B = c.shape[0]
camera_poses = c[:, :16].reshape(B, 4, 4) # 3x4
canonical_camera_poses = c_frame0[:, :16].reshape(1, 4, 4)
inverse_canonical_pose = np.linalg.inv(canonical_camera_poses)
inverse_canonical_pose = np.repeat(inverse_canonical_pose, B, 0)
cam_radius = np.linalg.norm(
c_frame0[:, :16].reshape(1, 4, 4)[:, :3, 3],
axis=-1,
keepdims=False) # since g-buffer adopts dynamic radius here.
frame1_fixed_pos = np.repeat(np.eye(4)[None], 1, axis=0)
frame1_fixed_pos[:, 2, -1] = -cam_radius
transform = frame1_fixed_pos @ inverse_canonical_pose
new_camera_poses = np.repeat(
transform, 1, axis=0
) @ camera_poses # [v, 4, 4]. np.repeat() is th.repeat_interleave()
c = np.concatenate([new_camera_poses.reshape(B, 16), c[:, 16:]],
axis=-1)
return c
def gen_rays(c2w, intrinsics, h, w):
# Generate rays
yy, xx = torch.meshgrid(
torch.arange(h, dtype=torch.float32) + 0.5,
torch.arange(w, dtype=torch.float32) + 0.5,
indexing='ij')
# normalize to 0-1 pixel range
yy = yy / h
xx = xx / w
cx, cy, fx, fy = intrinsics[2], intrinsics[
5], intrinsics[0], intrinsics[4]
xx = (xx - cx) / fx
yy = (yy - cy) / fy
zz = torch.ones_like(xx)
dirs = torch.stack((xx, yy, zz), dim=-1) # OpenCV convention
dirs /= torch.norm(dirs, dim=-1, keepdim=True)
dirs = dirs.reshape(-1, 3, 1)
del xx, yy, zz
dirs = (c2w[None, :3, :3] @ dirs)[..., 0]
origins = c2w[None, :3, 3].expand(h * w, -1).contiguous()
origins = origins.view(h, w, 3)
dirs = dirs.view(h, w, 3)
return origins, dirs
def get_c2ws(elevations, amuziths, camera_radius=1.5):
c2ws = np.stack([
orbit_camera(elevation, amuzith, radius=camera_radius) for elevation, amuzith in zip(elevations, amuziths)
], axis=0)
# change kiui opengl camera system to our camera system
c2ws[:, :3, 1:3] *= -1
c2ws[:, [0, 1, 2], :] = c2ws[:, [2, 0, 1], :]
c2ws = c2ws.reshape(-1, 16)
return c2ws
def get_camera_poses(c2ws, fov, h, w, intrinsics=None):
if intrinsics is None:
intrinsics = get_intri(h=64, w=64, normalize=True).reshape(9)
c2ws = normalize_camera(c2ws, c2ws[0:1])
rays_pluckers = []
c2ws = c2ws.reshape((-1, 4, 4))
c2ws = torch.from_numpy(c2ws).float()
gs_cams = []
for i, c2w in enumerate(c2ws):
gs_cams.append(loadCam(c2w.numpy(), fov, h, w))
rays_o, rays_d = gen_rays(c2w, intrinsics, h, w)
rays_plucker = torch.cat([torch.cross(rays_o, rays_d, dim=-1), rays_d],
dim=-1) # [h, w, 6]
rays_pluckers.append(rays_plucker.permute(2, 0, 1)) # [6, h, w]
n_views = len(gs_cams)
epipolar_constrains = []
cam_distances = []
for i in range(n_views):
cur_epipolar_constrains = []
kv_idxs = [(i-1)%n_views, (i+1)%n_views]
for kv_idx in kv_idxs:
# False means that the position is on the epipolar line
cam_epipolar_constrain = compute_epipolar_constrains(gs_cams[kv_idx], gs_cams[i], current_H=h//16, current_W=w//16)
cur_epipolar_constrains.append(cam_epipolar_constrain)
cam_distances.append(compute_camera_distance([gs_cams[i]], [gs_cams[kv_idxs[0]], gs_cams[kv_idxs[1]]])) # 1, 2
epipolar_constrains.append(torch.stack(cur_epipolar_constrains, dim=0))
rays_pluckers = torch.stack(rays_pluckers) # [v, 6, h, w]
cam_distances = torch.cat(cam_distances, dim=0) # [v, 2]
epipolar_constrains = torch.stack(epipolar_constrains, dim=0) # [v, 2, 1024, 1024]
return rays_pluckers, epipolar_constrains, cam_distances |