File size: 11,024 Bytes
4c35d22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import torch
from kornia.core import Tensor, concatenate

import torch
import math
import numpy as np
from torch import nn
from kiui.cam import orbit_camera


# gaussian splatting utils.graphics_utils
def getWorld2View2(R, t, translate=np.array([.0, .0, .0]), scale=1.0):
    Rt = np.zeros((4, 4))
    Rt[:3, :3] = R.transpose()
    Rt[:3, 3] = t
    Rt[3, 3] = 1.0

    C2W = np.linalg.inv(Rt)
    cam_center = C2W[:3, 3]
    cam_center = (cam_center + translate) * scale
    C2W[:3, 3] = cam_center
    Rt = np.linalg.inv(C2W)
    return np.float32(Rt)


def getProjectionMatrix(znear, zfar, fovX, fovY):
    tanHalfFovY = math.tan((fovY / 2))
    tanHalfFovX = math.tan((fovX / 2))

    top = tanHalfFovY * znear
    bottom = -top
    right = tanHalfFovX * znear
    left = -right

    P = torch.zeros(4, 4)

    z_sign = 1.0

    P[0, 0] = 2.0 * znear / (right - left)
    P[1, 1] = 2.0 * znear / (top - bottom)
    P[0, 2] = (right + left) / (right - left)
    P[1, 2] = (top + bottom) / (top - bottom)
    P[3, 2] = z_sign
    P[2, 2] = z_sign * zfar / (zfar - znear)
    P[2, 3] = -(zfar * znear) / (zfar - znear)
    return P


def fov2focal(fov, pixels):
    return pixels / (2 * math.tan(fov / 2))


def focal2fov(focal, pixels):
    return 2*math.atan(pixels/(2*focal))


# gaussian splatting scene.camera
class Camera(nn.Module):
    def __init__(self, R, T, FoVx, FoVy,
                 trans=np.array([0.0, 0.0, 0.0]), scale=1.0
                 ):
        super(Camera, self).__init__()

        self.R = R
        self.T = T
        self.FoVx = FoVx
        self.FoVy = FoVy

        self.zfar = 100.0
        self.znear = 0.01

        self.trans = trans
        self.scale = scale

        self.world_view_transform = torch.tensor(getWorld2View2(R, T, trans, scale)).transpose(0, 1)
        self.projection_matrix = getProjectionMatrix(znear=self.znear, zfar=self.zfar, fovX=self.FoVx, fovY=self.FoVy).transpose(0,1)
        self.full_proj_transform = (self.world_view_transform.unsqueeze(0).bmm(self.projection_matrix.unsqueeze(0))).squeeze(0)
        self.camera_center = self.world_view_transform.inverse()[3, :3]


# gaussian splatting utils.camera_utils
def loadCam(c2w, fovx, image_height=512, image_width=512):
    # load_camera
    w2c = np.linalg.inv(c2w)

    R = np.transpose(w2c[:3,:3])  # R is stored transposed due to 'glm' in CUDA code
    T = w2c[:3, 3]

    fovy = focal2fov(fov2focal(fovx, image_width), image_height)
    FovY = fovy
    FovX = fovx

    return Camera(R=R, T=T, 
                  FoVx=FovX, FoVy=FovY)


# epipolar calculation related
@torch.no_grad()
def fundamental_from_projections(P1: Tensor, P2: Tensor) -> Tensor:
    r"""Get the Fundamental matrix from Projection matrices.

    Args:
        P1: The projection matrix from first camera with shape :math:`(*, 3, 4)`.
        P2: The projection matrix from second camera with shape :math:`(*, 3, 4)`.

    Returns:
         The fundamental matrix with shape :math:`(*, 3, 3)`.
    """
    if not (len(P1.shape) >= 2 and P1.shape[-2:] == (3, 4)):
        raise AssertionError(P1.shape)
    if not (len(P2.shape) >= 2 and P2.shape[-2:] == (3, 4)):
        raise AssertionError(P2.shape)
    if P1.shape[:-2] != P2.shape[:-2]:
        raise AssertionError

    def vstack(x: Tensor, y: Tensor) -> Tensor:
        return concatenate([x, y], dim=-2)

    X1 = P1[..., 1:, :]
    X2 = vstack(P1[..., 2:3, :], P1[..., 0:1, :])
    X3 = P1[..., :2, :]

    Y1 = P2[..., 1:, :]
    Y2 = vstack(P2[..., 2:3, :], P2[..., 0:1, :])
    Y3 = P2[..., :2, :]

    X1Y1, X2Y1, X3Y1 = vstack(X1, Y1), vstack(X2, Y1), vstack(X3, Y1)
    X1Y2, X2Y2, X3Y2 = vstack(X1, Y2), vstack(X2, Y2), vstack(X3, Y2)
    X1Y3, X2Y3, X3Y3 = vstack(X1, Y3), vstack(X2, Y3), vstack(X3, Y3)

    F_vec = torch.cat(
        [
            X1Y1.det().reshape(-1, 1),
            X2Y1.det().reshape(-1, 1),
            X3Y1.det().reshape(-1, 1),
            X1Y2.det().reshape(-1, 1),
            X2Y2.det().reshape(-1, 1),
            X3Y2.det().reshape(-1, 1),
            X1Y3.det().reshape(-1, 1),
            X2Y3.det().reshape(-1, 1),
            X3Y3.det().reshape(-1, 1),
        ],
        dim=1,
    )

    return F_vec.view(*P1.shape[:-2], 3, 3)


def get_fundamental_matrix_with_H(cam1, cam2, current_H, current_W):
    NDC_2_pixel = torch.tensor([[current_W / 2, 0, current_W / 2], [0, current_H / 2, current_H / 2], [0, 0, 1]])
    # NDC_2_pixel_inversed = torch.inverse(NDC_2_pixel)
    NDC_2_pixel = NDC_2_pixel.float()
    cam_1_tranformation = cam1.full_proj_transform[:, [0,1,3]].T.float()
    cam_2_tranformation = cam2.full_proj_transform[:, [0,1,3]].T.float()
    cam_1_pixel = NDC_2_pixel@cam_1_tranformation
    cam_2_pixel = NDC_2_pixel@cam_2_tranformation

    # print(NDC_2_pixel.dtype, cam_1_tranformation.dtype, cam_2_tranformation.dtype, cam_1_pixel.dtype, cam_2_pixel.dtype)

    cam_1_pixel = cam_1_pixel.float()
    cam_2_pixel = cam_2_pixel.float()
    # print("cam_1", cam_1_pixel.dtype, cam_1_pixel.shape)
    # print("cam_2", cam_2_pixel.dtype, cam_2_pixel.shape)
    # print(NDC_2_pixel@cam_1_tranformation, NDC_2_pixel@cam_2_tranformation)
    return fundamental_from_projections(cam_1_pixel, cam_2_pixel)


def point_to_line_dist(points, lines):
    """
    Calculate the distance from points to lines in 2D.
    points: Nx3
    lines: Mx3

    return distance: NxM
    """
    numerator = torch.abs(lines @ points.T)
    denominator = torch.linalg.norm(lines[:,:2], dim=1, keepdim=True)
    return numerator / denominator


def compute_epipolar_constrains(cam1, cam2, current_H=64, current_W=64):
    n_frames = 1
    # sequence_length = current_W * current_H
    fundamental_matrix_1 = []
    
    fundamental_matrix_1.append(get_fundamental_matrix_with_H(cam1, cam2, current_H, current_W))
    fundamental_matrix_1 = torch.stack(fundamental_matrix_1, dim=0)

    x = torch.arange(current_W)
    y = torch.arange(current_H)
    x, y = torch.meshgrid(x, y, indexing='xy')
    x = x.reshape(-1)
    y = y.reshape(-1)
    heto_cam2 = torch.stack([x, y, torch.ones(size=(len(x),))], dim=1).view(-1, 3)
    heto_cam1 = torch.stack([x, y, torch.ones(size=(len(x),))], dim=1).view(-1, 3)
    # epipolar_line: n_frames X seq_len,  3
    line1 = (heto_cam2.unsqueeze(0).repeat(n_frames, 1, 1) @ fundamental_matrix_1).view(-1, 3)
    
    distance1 = point_to_line_dist(heto_cam1, line1)

    idx1_epipolar = distance1 > 1 # sequence_length x sequence_lengths

    return idx1_epipolar


def compute_camera_distance(cams, key_cams):
    cam_centers = [cam.camera_center for cam in cams]
    key_cam_centers = [cam.camera_center for cam in key_cams] 
    cam_centers = torch.stack(cam_centers)
    key_cam_centers = torch.stack(key_cam_centers)
    cam_distance = torch.cdist(cam_centers, key_cam_centers)

    return cam_distance


def get_intri(target_im=None, h=None, w=None, normalize=False):
    if target_im is None:
        assert (h is not None and w is not None)
    else:
        h, w = target_im.shape[:2]

    fx = fy = 1422.222
    res_raw = 1024
    f_x = f_y = fx * h / res_raw
    K = np.array([f_x, 0, w / 2, 0, f_y, h / 2, 0, 0, 1]).reshape(3, 3)
    if normalize:  # center is [0.5, 0.5], eg3d renderer tradition
        K[:2] /= h
    return K


def normalize_camera(c, c_frame0):
    B = c.shape[0]
    camera_poses = c[:, :16].reshape(B, 4, 4)  # 3x4
    canonical_camera_poses = c_frame0[:, :16].reshape(1, 4, 4)
    inverse_canonical_pose = np.linalg.inv(canonical_camera_poses)
    inverse_canonical_pose = np.repeat(inverse_canonical_pose, B, 0)

    cam_radius = np.linalg.norm(
        c_frame0[:, :16].reshape(1, 4, 4)[:, :3, 3],
        axis=-1,
        keepdims=False)  # since g-buffer adopts dynamic radius here.

    frame1_fixed_pos = np.repeat(np.eye(4)[None], 1, axis=0)
    frame1_fixed_pos[:, 2, -1] = -cam_radius

    transform = frame1_fixed_pos @ inverse_canonical_pose

    new_camera_poses = np.repeat(
        transform, 1, axis=0
    ) @ camera_poses  # [v, 4, 4]. np.repeat() is th.repeat_interleave()

    c = np.concatenate([new_camera_poses.reshape(B, 16), c[:, 16:]],
                        axis=-1)

    return c


def gen_rays(c2w, intrinsics, h, w):
    # Generate rays
    yy, xx = torch.meshgrid(
        torch.arange(h, dtype=torch.float32) + 0.5,
        torch.arange(w, dtype=torch.float32) + 0.5,
        indexing='ij')

    # normalize to 0-1 pixel range
    yy = yy / h
    xx = xx / w

    cx, cy, fx, fy = intrinsics[2], intrinsics[
        5], intrinsics[0], intrinsics[4]

    xx = (xx - cx) / fx
    yy = (yy - cy) / fy
    zz = torch.ones_like(xx)
    dirs = torch.stack((xx, yy, zz), dim=-1)  # OpenCV convention
    dirs /= torch.norm(dirs, dim=-1, keepdim=True)
    dirs = dirs.reshape(-1, 3, 1)
    del xx, yy, zz

    dirs = (c2w[None, :3, :3] @ dirs)[..., 0]

    origins = c2w[None, :3, 3].expand(h * w, -1).contiguous()
    origins = origins.view(h, w, 3)
    dirs = dirs.view(h, w, 3)

    return origins, dirs


def get_c2ws(elevations, amuziths, camera_radius=1.5):
    c2ws = np.stack([
        orbit_camera(elevation, amuzith, radius=camera_radius) for elevation, amuzith in zip(elevations, amuziths)
    ], axis=0)

    # change kiui opengl camera system to our camera system
    c2ws[:, :3, 1:3] *= -1
    c2ws[:, [0, 1, 2], :] = c2ws[:, [2, 0, 1], :]
    c2ws = c2ws.reshape(-1, 16)

    return c2ws


def get_camera_poses(c2ws, fov, h, w, intrinsics=None):
    if intrinsics is None:
        intrinsics = get_intri(h=64, w=64, normalize=True).reshape(9)

    c2ws = normalize_camera(c2ws, c2ws[0:1])

    rays_pluckers = []
    c2ws = c2ws.reshape((-1, 4, 4))
    c2ws = torch.from_numpy(c2ws).float()

    gs_cams = []
    for i, c2w in enumerate(c2ws):
        gs_cams.append(loadCam(c2w.numpy(), fov, h, w))
        rays_o, rays_d = gen_rays(c2w, intrinsics, h, w)
        rays_plucker = torch.cat([torch.cross(rays_o, rays_d, dim=-1), rays_d],
                                    dim=-1)  # [h, w, 6]
        rays_pluckers.append(rays_plucker.permute(2, 0, 1)) # [6, h, w]

    n_views = len(gs_cams)
    epipolar_constrains = []
    cam_distances = []
    for i in range(n_views):
        cur_epipolar_constrains = []
        kv_idxs = [(i-1)%n_views, (i+1)%n_views]
        for kv_idx in kv_idxs:
            # False means that the position is on the epipolar line
            cam_epipolar_constrain = compute_epipolar_constrains(gs_cams[kv_idx], gs_cams[i], current_H=h//16, current_W=w//16)
            cur_epipolar_constrains.append(cam_epipolar_constrain)

        cam_distances.append(compute_camera_distance([gs_cams[i]], [gs_cams[kv_idxs[0]], gs_cams[kv_idxs[1]]])) # 1, 2
        epipolar_constrains.append(torch.stack(cur_epipolar_constrains, dim=0))

    rays_pluckers = torch.stack(rays_pluckers) # [v, 6, h, w]
    cam_distances = torch.cat(cam_distances, dim=0) # [v, 2]
    epipolar_constrains = torch.stack(epipolar_constrains, dim=0) # [v, 2, 1024, 1024]

    return rays_pluckers, epipolar_constrains, cam_distances