File size: 21,629 Bytes
1034391
 
 
 
 
 
 
4aa0f34
1034391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4aa0f34
 
1034391
 
 
 
 
 
 
 
 
4aa0f34
1034391
 
 
 
 
 
4aa0f34
1034391
4aa0f34
1034391
 
 
 
 
 
4aa0f34
1034391
 
4aa0f34
1034391
 
 
4aa0f34
 
1034391
4aa0f34
1034391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4aa0f34
1034391
 
 
 
 
 
 
 
 
 
 
4aa0f34
 
 
1034391
 
 
 
 
 
 
4aa0f34
1034391
 
 
 
 
4aa0f34
1034391
 
 
 
 
4aa0f34
1034391
 
 
 
 
4aa0f34
1034391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4aa0f34
 
1034391
4aa0f34
 
1034391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4aa0f34
 
 
1034391
 
 
 
 
4aa0f34
 
1034391
 
4aa0f34
 
1034391
4aa0f34
1034391
 
 
 
 
 
 
4aa0f34
 
1034391
 
 
 
 
4aa0f34
1034391
 
 
 
 
4aa0f34
1034391
 
 
 
 
 
 
 
 
 
 
 
4aa0f34
1034391
 
 
 
 
4aa0f34
1034391
 
 
 
 
 
 
 
 
 
 
4aa0f34
1034391
 
 
 
 
4aa0f34
1034391
 
 
4aa0f34
1034391
 
4aa0f34
 
 
1034391
 
 
 
 
4aa0f34
1034391
 
 
 
 
 
 
 
4aa0f34
1034391
 
 
 
 
 
 
 
 
 
4aa0f34
 
 
1034391
 
 
 
 
 
 
 
 
4aa0f34
1034391
 
 
 
4aa0f34
 
1034391
 
 
 
 
 
 
4aa0f34
1034391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4aa0f34
1034391
 
 
 
 
4aa0f34
1034391
 
 
 
 
 
 
 
 
 
 
4aa0f34
1034391
 
 
 
 
 
 
4aa0f34
1034391
 
 
 
 
4aa0f34
 
 
1034391
 
 
 
 
4aa0f34
1034391
 
4aa0f34
 
 
1034391
 
4aa0f34
1034391
 
 
 
 
 
4aa0f34
1034391
4aa0f34
 
 
 
1034391
 
 
 
 
 
4aa0f34
1034391
 
4aa0f34
1034391
 
 
 
 
4aa0f34
1034391
 
 
 
 
 
 
 
 
 
4aa0f34
 
 
1034391
 
 
4aa0f34
 
 
 
 
 
 
1034391
 
 
 
 
 
 
 
 
 
4aa0f34
1034391
 
4aa0f34
1034391
4aa0f34
 
1034391
 
 
 
 
 
 
 
4aa0f34
 
1034391
4aa0f34
1034391
 
 
4aa0f34
1034391
 
 
 
 
 
4aa0f34
1034391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4aa0f34
 
 
1034391
4aa0f34
1034391
 
 
 
 
 
 
4aa0f34
1034391
 
4aa0f34
1034391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4aa0f34
 
 
1034391
4aa0f34
 
 
1034391
 
 
 
 
 
 
 
 
 
 
 
 
4aa0f34
1034391
 
4aa0f34
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from torch.nn import RMSNorm

from .config import DiaConfig
from .state import DecoderInferenceState, EncoderInferenceState, KVCache


def _normalize_axes(axes: tuple[int, ...], ndim: int) -> tuple[int, ...]:
    return tuple(ax if ax >= 0 else ndim + ax for ax in axes)


class DenseGeneral(nn.Module):
    """
    PyTorch equivalent of flax.linen.DenseGeneral with shapes defined at init.

    Stores weights (`kernel`) in the same layout as Jax and uses torch.tensordot
    for the generalized matrix multiplication. Weight/bias shapes are calculated
    and parameters created during initialization based on config.
    `load_weights` validates shapes and copies data.

    Attributes:
        axis (Tuple[int, ...]): Input axis or axes to contract.
        in_shapes (Tuple[int, ...]): Sizes of the input dimensions specified by `axis`.
        out_features (Tuple[int, ...]): Shape of the output features (non-contracted dims).
        use_bias (bool): Whether to add a bias term.
        weight (nn.Parameter): The kernel parameter.
        bias (Optional[nn.Parameter]): The bias parameter (if use_bias=True).
    """

    def __init__(
        self,
        in_shapes: tuple[int, ...],
        out_features: tuple[int, ...],
        axis: tuple[int, ...] = (-1,),
        weight_dtype: torch.dtype | None = None,
        device: torch.device | None = None,
    ):
        super().__init__()
        self.in_shapes = in_shapes
        self.out_features = out_features
        self.axis = axis
        self.kernel_shape = self.in_shapes + self.out_features

        factory_kwargs = {"device": device, "dtype": weight_dtype}
        self.weight = nn.Parameter(torch.empty(self.kernel_shape, **factory_kwargs))
        self.register_parameter("bias", None)

    def forward(self, inputs: Tensor) -> Tensor:
        norm_axis = _normalize_axes(self.axis, inputs.ndim)
        kernel_contract_axes = tuple(range(len(norm_axis)))

        output = torch.tensordot(
            inputs.to(self.weight.dtype),
            self.weight,
            dims=(norm_axis, kernel_contract_axes),
        ).to(inputs.dtype)
        return output


class MlpBlock(nn.Module):
    """MLP block using DenseGeneral."""

    def __init__(
        self, embed_dim: int, intermediate_dim: int, compute_dtype: torch.dtype
    ):
        super().__init__()
        self.dtype = compute_dtype

        self.wi_fused = DenseGeneral(
            in_shapes=(embed_dim,),
            out_features=(2, intermediate_dim),
            axis=(-1,),
            weight_dtype=compute_dtype,
        )

        self.wo = DenseGeneral(
            in_shapes=(intermediate_dim,),
            out_features=(embed_dim,),
            axis=(-1,),
            weight_dtype=compute_dtype,
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """Forward pass."""
        fused_x = self.wi_fused(x)

        gate = fused_x[..., 0, :]
        up = fused_x[..., 1, :]

        hidden = torch.mul(F.silu(gate), up).to(self.dtype)

        output = self.wo(hidden)
        return output


class RotaryEmbedding(nn.Module):
    """Rotary Position Embedding (RoPE) implementation in PyTorch."""

    def __init__(
        self,
        embedding_dims: int,
        min_timescale: int = 1,
        max_timescale: int = 10000,
        dtype: torch.dtype = torch.float32,
    ):
        super().__init__()
        if embedding_dims % 2 != 0:
            raise ValueError("Embedding dim must be even for RoPE.")
        self.embedding_dims = embedding_dims
        self.min_timescale = min_timescale
        self.max_timescale = max_timescale
        self.dtype = dtype

        half_embedding_dim = embedding_dims // 2
        fraction = (2.0 * torch.arange(0, half_embedding_dim)) / embedding_dims
        self.register_buffer(
            "timescale",
            self.min_timescale * (self.max_timescale / self.min_timescale) ** fraction,
            persistent=False,
        )

    def extra_repr(self) -> str:
        s = f"{self.timescale.shape}"
        return s

    def forward(self, inputs: torch.Tensor, position: torch.Tensor):
        """Applies RoPE."""
        position = position.unsqueeze(-1).unsqueeze(-1)
        timescale = self.timescale.to(inputs.device)
        sinusoid_inp = position / timescale
        sin = torch.sin(sinusoid_inp).to(inputs.dtype)
        cos = torch.cos(sinusoid_inp).to(inputs.dtype)
        first_half, second_half = torch.chunk(inputs, 2, dim=-1)
        first_part = first_half * cos - second_half * sin
        second_part = second_half * cos + first_half * sin
        return torch.cat((first_part, second_part), dim=-1)


class Attention(nn.Module):
    """Attention using DenseGeneral."""

    def __init__(
        self,
        config: DiaConfig,
        q_embed_dim: int,
        kv_embed_dim: int,
        num_query_heads: int,
        num_kv_heads: int,
        head_dim: int,
        compute_dtype: torch.dtype,
        is_cross_attn: bool = False,
        out_embed_dim: int | None = None,
    ):
        super().__init__()
        self.num_query_heads = num_query_heads
        self.num_kv_heads = num_kv_heads
        self.head_dim = head_dim
        self.is_cross_attn = is_cross_attn
        self.output_dim = out_embed_dim if out_embed_dim is not None else q_embed_dim
        self.projected_query_dim = num_query_heads * head_dim
        if num_query_heads % num_kv_heads != 0:
            raise ValueError(
                f"num_query_heads ({num_query_heads}) must be divisible by num_kv_heads ({num_kv_heads})"
            )
        self.num_gqa_groups = num_query_heads // num_kv_heads

        # --- Projection Layers using DenseGeneral ---
        self.q_proj = DenseGeneral(
            in_shapes=(q_embed_dim,),
            out_features=(num_query_heads, head_dim),
            axis=(-1,),
            weight_dtype=compute_dtype,
        )
        self.k_proj = DenseGeneral(
            in_shapes=(kv_embed_dim,),
            out_features=(num_kv_heads, head_dim),
            axis=(-1,),
            weight_dtype=compute_dtype,
        )
        self.v_proj = DenseGeneral(
            in_shapes=(kv_embed_dim,),
            out_features=(num_kv_heads, head_dim),
            axis=(-1,),
            weight_dtype=compute_dtype,
        )
        self.o_proj = DenseGeneral(
            in_shapes=(num_query_heads, head_dim),
            out_features=(self.output_dim,),
            axis=(-2, -1),
            weight_dtype=compute_dtype,
        )

        # --- Rotary Embedding ---
        self.rotary_emb = RotaryEmbedding(
            embedding_dims=self.head_dim,
            min_timescale=config.model.rope_min_timescale,
            max_timescale=config.model.rope_max_timescale,
            dtype=compute_dtype,
        )

    def forward(
        self,
        Xq: torch.Tensor,  # (B, T, D) T = 1 in AR generation
        Xkv: torch.Tensor,  # (B, S, E) S = 1 in AR generation
        q_positions: torch.Tensor,  # (B, T)
        kv_positions: torch.Tensor | None = None,  # (B, S)
        attn_mask: torch.Tensor
        | None = None,  # None in Decoder Self Attention, Valid mask in Others
        cache: KVCache | None = None,  # None in Encoder, KVCache in Decoder
        prefill: bool = False,
        is_causal: bool = False,
    ) -> tuple[torch.Tensor, tuple[torch.Tensor, torch.Tensor] | None]:
        """
        Performs attention calculation with optional KV caching.

        Args:
            Xq: Query tensor (B, T, D). T=1 during single-step decoding.
            Xkv: Key/Value source tensor (B, S, E). S=1 during single-step decoding for self-attn.
            q_positions: Positions for queries (B, T).
            kv_positions: Positions for keys/values (B, S). If None, uses q_positions.
            attn_mask: Attention mask.
            cache: KVCache.
            prefill: If True, use prefill mode.

        Returns:
            A tuple containing:
            - output: The attention output tensor (B, T, output_dim).
            - present_kv: The K/V state to be cached for the next step ((B, N, S_new, H), (B, N, S_new, H)). For self-attn, S_new = S_past + S. For cross-attn, S_new = S_kv.
        """
        if kv_positions is None:
            kv_positions = q_positions
        original_dtype = Xq.dtype

        Xq_BxTxNxH = self.q_proj(Xq)
        Xq_BxTxNxH = self.rotary_emb(Xq_BxTxNxH, position=q_positions)
        Xq_BxNxTxH = Xq_BxTxNxH.transpose(1, 2)

        attn_k: torch.Tensor | None = None
        attn_v: torch.Tensor | None = None

        if self.is_cross_attn:
            attn_k, attn_v = cache.k, cache.v
        else:
            Xk_BxSxKxH = self.k_proj(Xkv)  # (B, S, K, H)
            Xv_BxSxKxH = self.v_proj(Xkv)  # (B, S, K, H)
            Xk_BxSxKxH = self.rotary_emb(
                Xk_BxSxKxH, position=kv_positions
            )  # (B, S, K, H)

            Xk_BxKxSxH = Xk_BxSxKxH.transpose(1, 2)  # (B, K, S, H)
            Xv_BxKxSxH = Xv_BxSxKxH.transpose(1, 2)  # (B, K, S, H)

            if cache is None:
                attn_k = Xk_BxKxSxH
                attn_v = Xv_BxKxSxH
            else:
                if prefill:
                    attn_k, attn_v = Xk_BxKxSxH, Xv_BxKxSxH
                    cache.prefill(attn_k, attn_v)
                else:
                    attn_k, attn_v = cache.update(Xk_BxKxSxH, Xv_BxKxSxH)

        attn_output = F.scaled_dot_product_attention(
            Xq_BxNxTxH,
            attn_k,
            attn_v,
            attn_mask=attn_mask,
            scale=1.0,
            enable_gqa=self.num_gqa_groups > 1,
            is_causal=is_causal,
        )

        attn_output = attn_output.transpose(1, 2).contiguous()  # (B, T, N, H)
        output = self.o_proj(attn_output)

        return output.to(original_dtype)


class EncoderLayer(nn.Module):
    """Transformer Encoder Layer using DenseGeneral."""

    def __init__(self, config: DiaConfig, compute_dtype: torch.dtype):
        super().__init__()
        self.config = config
        model_config = config.model
        enc_config = config.model.encoder
        embed_dim = enc_config.n_embd

        self.pre_sa_norm = RMSNorm(
            embed_dim,
            eps=model_config.normalization_layer_epsilon,
            dtype=torch.float32,
        )
        self.self_attention = Attention(
            config,
            q_embed_dim=embed_dim,
            kv_embed_dim=embed_dim,
            num_query_heads=enc_config.n_head,
            num_kv_heads=enc_config.n_head,
            head_dim=enc_config.head_dim,
            compute_dtype=compute_dtype,
            is_cross_attn=False,
            out_embed_dim=embed_dim,
        )
        self.post_sa_norm = RMSNorm(
            embed_dim,
            eps=model_config.normalization_layer_epsilon,
            dtype=torch.float32,
        )
        self.mlp = MlpBlock(
            embed_dim=embed_dim,
            intermediate_dim=enc_config.n_hidden,
            compute_dtype=compute_dtype,
        )

    def forward(
        self,
        x: torch.Tensor,
        state: EncoderInferenceState,
    ) -> torch.Tensor:
        residual = x
        x_norm = self.pre_sa_norm(x)
        sa_out = self.self_attention(
            Xq=x_norm,
            Xkv=x_norm,
            q_positions=state.positions,
            kv_positions=state.positions,
            attn_mask=state.attn_mask,
        )
        x = residual + sa_out

        residual = x
        x_norm = self.post_sa_norm(x)
        mlp_out = self.mlp(x_norm)
        x = residual + mlp_out

        return x


class Encoder(nn.Module):
    """Transformer Encoder Stack using DenseGeneral."""

    def __init__(self, config: DiaConfig, compute_dtype: torch.dtype):
        super().__init__()
        self.config = config
        model_config = config.model
        enc_config = config.model.encoder

        self.embedding = nn.Embedding(
            model_config.src_vocab_size,
            enc_config.n_embd,
            dtype=compute_dtype,
        )
        self.layers = nn.ModuleList(
            [EncoderLayer(config, compute_dtype) for _ in range(enc_config.n_layer)]
        )
        self.norm = RMSNorm(
            enc_config.n_embd,
            eps=model_config.normalization_layer_epsilon,
            dtype=torch.float32,
        )

    def forward(
        self,
        x_ids: torch.Tensor,
        state: EncoderInferenceState,
    ) -> torch.Tensor:
        x = self.embedding(x_ids)

        for layer in self.layers:
            x = layer(x, state)

        x = self.norm(x)
        return x


class DecoderLayer(nn.Module):
    """Transformer Decoder Layer using DenseGeneral."""

    def __init__(self, config: DiaConfig, compute_dtype: torch.dtype):
        super().__init__()
        self.config = config
        model_config = config.model
        dec_config = config.model.decoder
        enc_config = config.model.encoder
        dec_embed_dim = dec_config.n_embd
        enc_embed_dim = enc_config.n_embd

        # Norms
        self.pre_sa_norm = RMSNorm(
            dec_embed_dim,
            eps=model_config.normalization_layer_epsilon,
            dtype=torch.float32,
        )
        self.pre_ca_norm = RMSNorm(
            dec_embed_dim,
            eps=model_config.normalization_layer_epsilon,
            dtype=torch.float32,
        )
        self.pre_mlp_norm = RMSNorm(
            dec_embed_dim,
            eps=model_config.normalization_layer_epsilon,
            dtype=torch.float32,
        )

        # Self-Attention (GQA) with Causal Masking
        self.self_attention = Attention(
            config,
            q_embed_dim=dec_embed_dim,
            kv_embed_dim=dec_embed_dim,
            num_query_heads=dec_config.gqa_query_heads,
            num_kv_heads=dec_config.kv_heads,
            head_dim=dec_config.gqa_head_dim,
            compute_dtype=compute_dtype,
            is_cross_attn=False,
            out_embed_dim=dec_embed_dim,
        )
        # Cross-Attention (MHA)
        self.cross_attention = Attention(
            config=config,
            q_embed_dim=dec_embed_dim,
            kv_embed_dim=enc_embed_dim,  # Note kv_embed_dim
            num_query_heads=dec_config.cross_query_heads,
            num_kv_heads=dec_config.cross_query_heads,
            head_dim=dec_config.cross_head_dim,
            compute_dtype=compute_dtype,
            is_cross_attn=True,
            out_embed_dim=dec_embed_dim,
        )
        # MLP
        self.mlp = MlpBlock(
            embed_dim=dec_embed_dim,
            intermediate_dim=dec_config.n_hidden,
            compute_dtype=compute_dtype,
        )

    def forward(
        self,
        x: torch.Tensor,
        state: DecoderInferenceState,
        self_attn_cache: KVCache | None = None,
        cross_attn_cache: KVCache | None = None,
        prefill: bool = False,
    ) -> torch.Tensor:
        residual = x
        x_norm = self.pre_sa_norm(x)

        sa_out = self.self_attention(
            Xq=x_norm,  # (2, 1, D)
            Xkv=x_norm,  # (2, 1, D)
            q_positions=state.dec_positions,  # (2, 1)
            kv_positions=state.dec_positions,  # (2, 1)
            attn_mask=None,
            cache=self_attn_cache,
            prefill=prefill,
            is_causal=prefill,
        )

        x = residual + sa_out

        residual = x
        x_norm = self.pre_ca_norm(x)
        ca_out = self.cross_attention(
            Xq=x_norm,
            Xkv=state.enc_out,
            q_positions=state.dec_positions,
            kv_positions=state.enc_positions,
            attn_mask=state.dec_cross_attn_mask,
            cache=cross_attn_cache,
        )
        x = residual + ca_out

        residual = x
        x_norm = self.pre_mlp_norm(x)
        mlp_out = self.mlp(x_norm)
        x = residual + mlp_out

        return x


class Decoder(nn.Module):
    """Transformer Decoder Stack using DenseGeneral."""

    def __init__(self, config: DiaConfig, compute_dtype: torch.dtype):
        super().__init__()
        self.config = config
        model_config = config.model
        dec_config = config.model.decoder
        data_config = config.data
        self.num_channels = data_config.channels
        self.num_layers = dec_config.n_layer

        self.embeddings = nn.ModuleList(
            [
                nn.Embedding(
                    model_config.tgt_vocab_size, dec_config.n_embd, dtype=compute_dtype
                )
                for _ in range(self.num_channels)
            ]
        )
        self.layers = nn.ModuleList(
            [
                DecoderLayer(config=config, compute_dtype=compute_dtype)
                for _ in range(self.num_layers)
            ]
        )

        self.norm = RMSNorm(
            dec_config.n_embd,
            eps=model_config.normalization_layer_epsilon,
            dtype=torch.float32,
        )

        self.logits_dense = DenseGeneral(
            in_shapes=(dec_config.n_embd,),
            out_features=(self.num_channels, model_config.tgt_vocab_size),
            axis=(-1,),
            weight_dtype=compute_dtype,
        )

    def precompute_cross_attn_cache(
        self,
        enc_out: torch.Tensor,  # (B, S, E)
        enc_positions: torch.Tensor,  # (B, S)
    ) -> list[KVCache]:
        """
        Computes the Key and Value tensors for cross-attention for each layer from the encoder output.
        """
        per_layer_kv_cache: list[KVCache] = []

        for layer in self.layers:
            cross_attn_module = layer.cross_attention
            k_proj = cross_attn_module.k_proj(enc_out)
            v_proj = cross_attn_module.v_proj(enc_out)

            k_proj = cross_attn_module.rotary_emb(k_proj, position=enc_positions)
            k = k_proj.transpose(1, 2)
            v = v_proj.transpose(1, 2)

            per_layer_kv_cache.append(KVCache.from_kv(k, v))

        return per_layer_kv_cache

    def decode_step(
        self,
        tgt_ids_Bx1xC: torch.Tensor,  # [B, 1, C]
        state: DecoderInferenceState,
    ) -> torch.Tensor:
        """
        Performs a single decoding step, managing KV caches layer by layer.

        Returns:
            A tuple containing:
            - logits_Bx1xCV: The final output logits for the current step (B, 1, C*V), cast to float32.
        """

        x = None
        for i in range(self.num_channels):
            channel_tokens = tgt_ids_Bx1xC[..., i]
            channel_embed = self.embeddings[i](channel_tokens)
            x = channel_embed if x is None else x + channel_embed

        for i, layer in enumerate(self.layers):
            self_cache = state.self_attn_cache[i]
            cross_cache = state.cross_attn_cache[i]
            x = layer(
                x,  # (2, 1, D)
                state,
                self_attn_cache=self_cache,
                cross_attn_cache=cross_cache,
            )

        x = self.norm(x)
        logits_Bx1xCxV = self.logits_dense(x)

        return logits_Bx1xCxV.to(torch.float32)

    def forward(
        self, tgt_ids_BxTxC: torch.Tensor, state: DecoderInferenceState
    ) -> torch.Tensor:
        """
        Forward pass for the Decoder stack, managing KV caches.

        Args:
            tgt_ids_BxTxC: Target token IDs (B, T, C).
            encoder_out: Output from the encoder (B, S, E).
            tgt_positions: Positions for target sequence (B, T).
            src_positions: Positions for source sequence (B, S).
            self_attn_mask: Mask for self-attention.
            cross_attn_mask: Mask for cross-attention.
            past_key_values: List containing the self-attention KV cache for each layer
                             from the previous decoding step. `len(past_key_values)` should
                             equal `num_layers`.
            precomputed_cross_attn_kv: A single tuple containing the pre-computed K/V cache
                                      derived from `encoder_out`. This is passed identically
                                      to all layers.

        Returns:
            A tuple containing:
            - logits: The final output logits (B, T, C * V), cast to float32.
            - present_key_values: A list containing the updated self-attention KV cache
                                 for each layer for the *current* decoding step.
        """
        _, _, num_channels_in = tgt_ids_BxTxC.shape
        assert num_channels_in == self.num_channels, "Input channels mismatch"

        # Embeddings
        x = None
        for i in range(self.num_channels):
            channel_tokens = tgt_ids_BxTxC[..., i]
            channel_embed = self.embeddings[i](channel_tokens)
            x = channel_embed if x is None else x + channel_embed

        for i, layer in enumerate(self.layers):
            self_cache = state.self_attn_cache[i]
            cross_cache = state.cross_attn_cache[i]
            x = layer(
                x,
                state,
                self_attn_cache=self_cache,
                cross_attn_cache=cross_cache,
                prefill=True,
            )

        # Final Norm
        x = self.norm(x)
        logits_BxTxCxV = self.logits_dense(x)

        return logits_BxTxCxV.to(torch.float32)


class DiaModel(nn.Module):
    """PyTorch Dia Model using DenseGeneral."""

    def __init__(self, config: DiaConfig, compute_dtype: torch.dtype):
        super().__init__()
        self.config = config
        self.encoder = Encoder(config, compute_dtype)
        self.decoder = Decoder(config, compute_dtype)