Spaces:
Sleeping
Sleeping
Add yourbench_task.py from lighteval
Browse files
yourbench_space/lighteval_task/yourbench_task.py
ADDED
@@ -0,0 +1,269 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MIT License
|
2 |
+
|
3 |
+
# Copyright (c) 2024 The HuggingFace Team
|
4 |
+
|
5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
7 |
+
# in the Software without restriction, including without limitation the rights
|
8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
10 |
+
# furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
# The above copyright notice and this permission notice shall be included in all
|
13 |
+
# copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
# SOFTWARE.
|
22 |
+
|
23 |
+
|
24 |
+
import logging
|
25 |
+
import re
|
26 |
+
|
27 |
+
import numpy as np
|
28 |
+
from aenum import extend_enum
|
29 |
+
|
30 |
+
from lighteval.metrics.metrics import Metrics
|
31 |
+
from lighteval.metrics.metrics_sample import JudgeLLM
|
32 |
+
from lighteval.metrics.utils.metric_utils import (
|
33 |
+
CorpusLevelMetricGrouping,
|
34 |
+
MetricCategory,
|
35 |
+
MetricUseCase,
|
36 |
+
)
|
37 |
+
from lighteval.tasks.lighteval_task import LightevalTaskConfig
|
38 |
+
from lighteval.tasks.requests import Doc
|
39 |
+
|
40 |
+
|
41 |
+
logger = logging.getLogger(__name__)
|
42 |
+
|
43 |
+
JUDGE_ANSWER_SYSTEM_PROMPT = """You will be provided with the summary of a document, a piece of text, a question generated from that text, and the correct or "gold" answer to the question. Additionally, you will receive a model answer. Your task is to determine wether the model answer is correct using the provided "gold" answer as a reference.
|
44 |
+
|
45 |
+
# Steps
|
46 |
+
|
47 |
+
1. **Document Understanding**:
|
48 |
+
- Analyze the provided document summary to grasp the context and main themes.
|
49 |
+
|
50 |
+
2. **Chunk Understanding**:
|
51 |
+
- Examine the provided text (chunk) to understand its content.
|
52 |
+
|
53 |
+
3. **Question Understanding**:
|
54 |
+
- Interpret the given question to fully comprehend what is being asked.
|
55 |
+
|
56 |
+
4. **Ground Truth Answer Understanding**:
|
57 |
+
- Understand the provided ground truth answer, identifying its key points.
|
58 |
+
|
59 |
+
6. **Answer Understanding**:
|
60 |
+
- Examine the Model Answer, identifying key points and assessing accuracy and factuality.
|
61 |
+
|
62 |
+
7. **Final Answer**:
|
63 |
+
- 0 or 1 (0 if the model answer is incorrect, 1 if it is correct).
|
64 |
+
|
65 |
+
# Output Format
|
66 |
+
|
67 |
+
- Provide your final evaluation of whether the answer is correct within `<final_answer>` XML tags.
|
68 |
+
- Include a detailed analysis for each part within the designated XML tags: `<document_understanding>`, `<chunk_understanding>`, `<question_understanding>`, `<ground_truth_answer_understanding>`, `<model_answer_understanding>`, and `<final_answer>`.
|
69 |
+
|
70 |
+
# Examples
|
71 |
+
|
72 |
+
**Input**:
|
73 |
+
```xml
|
74 |
+
<document_summary>
|
75 |
+
[Summary]
|
76 |
+
</document_summary>
|
77 |
+
|
78 |
+
<piece_of_text>
|
79 |
+
[Text]
|
80 |
+
</piece_of_text>
|
81 |
+
|
82 |
+
<question>
|
83 |
+
[Question]
|
84 |
+
</question>
|
85 |
+
|
86 |
+
<gold_answer>
|
87 |
+
[Gold Answer]
|
88 |
+
</gold_answer>
|
89 |
+
|
90 |
+
<model_answer>
|
91 |
+
[Model Answer]
|
92 |
+
</model_answer>
|
93 |
+
```
|
94 |
+
**Output**:
|
95 |
+
```xml
|
96 |
+
|
97 |
+
<document_understanding>
|
98 |
+
Understanding of the summary including key themes
|
99 |
+
</document_understanding>
|
100 |
+
|
101 |
+
<chunk_understanding>
|
102 |
+
Analysis of the piece of text
|
103 |
+
</chunk_understanding>
|
104 |
+
|
105 |
+
<question_understanding>
|
106 |
+
Comprehension of the question being asked
|
107 |
+
</question_understanding>
|
108 |
+
|
109 |
+
<ground_truth_answer_understanding>
|
110 |
+
Key points from the gold answer
|
111 |
+
</ground_truth_answer_understanding>
|
112 |
+
|
113 |
+
<model_answer_understanding>
|
114 |
+
Key points and accuracy of Answer A
|
115 |
+
</model_answer_understanding>
|
116 |
+
|
117 |
+
<final_answer>
|
118 |
+
1 or 0 (1 if the model answer is correct, 0 if it is incorrect)
|
119 |
+
</final_answer>
|
120 |
+
```
|
121 |
+
|
122 |
+
# Notes
|
123 |
+
|
124 |
+
- Always focus on key points and factual correctness as per the ground truth.
|
125 |
+
- Avoid any biases and rely solely on the evidence presented.
|
126 |
+
- Enclose all evaluations and analyses in the specified XML tags for clarity and structure."""
|
127 |
+
|
128 |
+
|
129 |
+
JUDGE_ANSWER_USER_PROMPT = """<document_summary>
|
130 |
+
{summary}
|
131 |
+
</document_summary>
|
132 |
+
|
133 |
+
<piece_of_text>
|
134 |
+
{chunk}
|
135 |
+
</piece_of_text>
|
136 |
+
|
137 |
+
<question>
|
138 |
+
{question}
|
139 |
+
</question>
|
140 |
+
|
141 |
+
<gold_answer>
|
142 |
+
{oracle_answer}
|
143 |
+
</gold_answer>
|
144 |
+
|
145 |
+
<model_answer>
|
146 |
+
{model_answer}
|
147 |
+
</model_answer>"""
|
148 |
+
|
149 |
+
|
150 |
+
def get_judge_prompt(question: str, answer: str, gold: str, **kwargs):
|
151 |
+
chunk = kwargs.get("chunks", "")
|
152 |
+
summary = kwargs.get("documents", "")
|
153 |
+
|
154 |
+
return [
|
155 |
+
{"role": "system", "content": JUDGE_ANSWER_SYSTEM_PROMPT},
|
156 |
+
{
|
157 |
+
"role": "user",
|
158 |
+
"content": JUDGE_ANSWER_USER_PROMPT.format(
|
159 |
+
summary=summary, chunk=chunk, question=question, oracle_answer=gold, model_answer=answer
|
160 |
+
),
|
161 |
+
},
|
162 |
+
]
|
163 |
+
|
164 |
+
|
165 |
+
def process_judge_response_yourbench(response):
|
166 |
+
# extract the final answer using regex from the response xml
|
167 |
+
try:
|
168 |
+
answer = re.search(r"<final_answer>(.*?)</final_answer>", response, re.DOTALL).group(1)
|
169 |
+
return int(answer)
|
170 |
+
except Exception as e:
|
171 |
+
logger.error(f"Error processing judge response: {e}")
|
172 |
+
return 0
|
173 |
+
|
174 |
+
|
175 |
+
class JudgeLLMYourBench(JudgeLLM):
|
176 |
+
def __init__(self):
|
177 |
+
super().__init__(
|
178 |
+
judge_model_name="gpt-4o-2024-08-06",
|
179 |
+
template=get_judge_prompt,
|
180 |
+
process_judge_response=process_judge_response_yourbench,
|
181 |
+
judge_backend="openai",
|
182 |
+
short_judge_name="yourbench_judge",
|
183 |
+
)
|
184 |
+
|
185 |
+
def compute(self, sample_ids: list[str], responses: list, formatted_docs: list[Doc]) -> list[dict[str, float]]:
|
186 |
+
# If we are evaluating a multiturn task, we need to have specific field in the formatted doc
|
187 |
+
questions = [formatted_doc.specific["question"] for formatted_doc in formatted_docs]
|
188 |
+
golds = [formatted_doc.get_golds()[0] for formatted_doc in formatted_docs]
|
189 |
+
predictions = [response[0].result[0] for response in responses]
|
190 |
+
options = [None] * len(questions)
|
191 |
+
chunks = [formatted_doc.specific["chunks"][0] for formatted_doc in formatted_docs]
|
192 |
+
documents = [formatted_doc.specific["document"] for formatted_doc in formatted_docs]
|
193 |
+
|
194 |
+
score, _, _ = self.judge.evaluate_answer_batch(
|
195 |
+
questions, predictions, options, golds, chunks=chunks, documents=documents
|
196 |
+
)
|
197 |
+
|
198 |
+
metrics = []
|
199 |
+
for i in range(len(sample_ids)):
|
200 |
+
metrics.append(
|
201 |
+
{
|
202 |
+
"accuracy": score[i],
|
203 |
+
}
|
204 |
+
)
|
205 |
+
|
206 |
+
return metrics
|
207 |
+
|
208 |
+
|
209 |
+
ZEROSHOT_QA_USER_PROMPT = """Answer the following question:
|
210 |
+
|
211 |
+
<question>
|
212 |
+
{question}
|
213 |
+
</question>
|
214 |
+
|
215 |
+
Enclose your full answer in <answer> XML tags. For example:
|
216 |
+
|
217 |
+
<answer>
|
218 |
+
[your answer here]
|
219 |
+
</answer>"""
|
220 |
+
|
221 |
+
|
222 |
+
def yourbench_prompt(line, task_name: str = ""):
|
223 |
+
return Doc(
|
224 |
+
task_name=task_name,
|
225 |
+
query=ZEROSHOT_QA_USER_PROMPT.format(question=line["question"]),
|
226 |
+
choices=[line["ground_truth_answer"]],
|
227 |
+
gold_index=0,
|
228 |
+
specific={
|
229 |
+
"question_category": line["question_category"],
|
230 |
+
"kind": line["kind"],
|
231 |
+
"estimated_difficulty": line["estimated_difficulty"],
|
232 |
+
"document_id": line["document_id"],
|
233 |
+
"question_generating_model": line["question_generating_model"],
|
234 |
+
"chunks": line["chunks"],
|
235 |
+
"question": line["question"],
|
236 |
+
"document": line["document"],
|
237 |
+
},
|
238 |
+
)
|
239 |
+
|
240 |
+
|
241 |
+
yourbench_metrics = CorpusLevelMetricGrouping(
|
242 |
+
metric_name=["accuracy"],
|
243 |
+
higher_is_better={"accuracy": True},
|
244 |
+
category=MetricCategory.LLM_AS_JUDGE,
|
245 |
+
use_case=MetricUseCase.ACCURACY,
|
246 |
+
sample_level_fn=JudgeLLMYourBench().compute,
|
247 |
+
corpus_level_fn={"accuracy": np.mean},
|
248 |
+
)
|
249 |
+
extend_enum(Metrics, "yourbench_metrics", yourbench_metrics)
|
250 |
+
|
251 |
+
yourbench = LightevalTaskConfig(
|
252 |
+
name=HF_TASK_NAME, # noqa: F821
|
253 |
+
suite=["custom"],
|
254 |
+
prompt_function=yourbench_prompt,
|
255 |
+
hf_repo=HF_DATASET_NAME, # noqa: F821
|
256 |
+
hf_subset="lighteval_single_shot_questions",
|
257 |
+
hf_avail_splits=["train"],
|
258 |
+
evaluation_splits=["train"],
|
259 |
+
few_shots_split=None,
|
260 |
+
few_shots_select=None,
|
261 |
+
generation_size=8192,
|
262 |
+
metric=[Metrics.yourbench_metrics],
|
263 |
+
stop_sequence=[],
|
264 |
+
trust_dataset=True,
|
265 |
+
version=0,
|
266 |
+
)
|
267 |
+
|
268 |
+
|
269 |
+
TASKS_TABLE = [yourbench]
|