Spaces:
Sleeping
Sleeping
Alina Lozovskaya
commited on
Commit
·
2617bee
1
Parent(s):
e1a6c20
Apply Ruff to yourbench_space/
Browse files
yourbench_space/leaderboard_space/app.py
CHANGED
@@ -1,7 +1,8 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
from utils import run_pipeline, update_examples
|
4 |
-
from env import TASK
|
5 |
|
6 |
with gr.Blocks(
|
7 |
title="YourBench Leaderboard",
|
@@ -11,12 +12,7 @@ with gr.Blocks(
|
|
11 |
# DISPLAY TABLE AND ANALYSIS
|
12 |
title = gr.Markdown(f"YourBench auto-Leaderboard for {TASK}")
|
13 |
leaderboard = gr.DataFrame(label="Results", interactive=False)
|
14 |
-
samples_ix = gr.Number(
|
15 |
-
label="Example Index",
|
16 |
-
value=0,
|
17 |
-
step=1,
|
18 |
-
info="Navigate through different examples"
|
19 |
-
)
|
20 |
with gr.Tab("Hardest samples"):
|
21 |
hard_samples = gr.HTML()
|
22 |
with gr.Tab("Easiest samples"):
|
@@ -28,4 +24,4 @@ with gr.Blocks(
|
|
28 |
|
29 |
demo.load(run_pipeline, [samples_ix], [leaderboard, easy_samples, hard_samples, all_samples])
|
30 |
|
31 |
-
demo.launch()
|
|
|
1 |
+
from env import TASK
|
2 |
+
from utils import run_pipeline, update_examples
|
3 |
+
|
4 |
import gradio as gr
|
5 |
|
|
|
|
|
6 |
|
7 |
with gr.Blocks(
|
8 |
title="YourBench Leaderboard",
|
|
|
12 |
# DISPLAY TABLE AND ANALYSIS
|
13 |
title = gr.Markdown(f"YourBench auto-Leaderboard for {TASK}")
|
14 |
leaderboard = gr.DataFrame(label="Results", interactive=False)
|
15 |
+
samples_ix = gr.Number(label="Example Index", value=0, step=1, info="Navigate through different examples")
|
|
|
|
|
|
|
|
|
|
|
16 |
with gr.Tab("Hardest samples"):
|
17 |
hard_samples = gr.HTML()
|
18 |
with gr.Tab("Easiest samples"):
|
|
|
24 |
|
25 |
demo.load(run_pipeline, [samples_ix], [leaderboard, easy_samples, hard_samples, all_samples])
|
26 |
|
27 |
+
demo.launch()
|
yourbench_space/leaderboard_space/env.py
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
import os
|
|
|
|
|
2 |
INIT_MODELS = [
|
3 |
# 70B
|
4 |
("Qwen/Qwen2.5-72B-Instruct", "sambanova"),
|
@@ -7,10 +9,10 @@ INIT_MODELS = [
|
|
7 |
# 20 to 30B
|
8 |
("Qwen/QwQ-32B", "sambanova"),
|
9 |
("mistralai/Mistral-Small-24B-Instruct-2501", "together"),
|
10 |
-
#("allenai/OLMo-2-0325-32B-Instruct", "hf-inference")
|
11 |
-
]
|
12 |
MODELS = [m[0] for m in INIT_MODELS]
|
13 |
TASK = os.getenv("TASK")
|
14 |
# With storage
|
15 |
-
HF_TOKEN=os.getenv("HF_TOKEN")
|
16 |
ORG_NAME = os.getenv("ORG_NAME")
|
|
|
1 |
import os
|
2 |
+
|
3 |
+
|
4 |
INIT_MODELS = [
|
5 |
# 70B
|
6 |
("Qwen/Qwen2.5-72B-Instruct", "sambanova"),
|
|
|
9 |
# 20 to 30B
|
10 |
("Qwen/QwQ-32B", "sambanova"),
|
11 |
("mistralai/Mistral-Small-24B-Instruct-2501", "together"),
|
12 |
+
# ("allenai/OLMo-2-0325-32B-Instruct", "hf-inference")
|
13 |
+
]
|
14 |
MODELS = [m[0] for m in INIT_MODELS]
|
15 |
TASK = os.getenv("TASK")
|
16 |
# With storage
|
17 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
18 |
ORG_NAME = os.getenv("ORG_NAME")
|
yourbench_space/leaderboard_space/utils.py
CHANGED
@@ -1,14 +1,14 @@
|
|
1 |
-
|
2 |
-
from functools import lru_cache
|
3 |
from typing import Tuple
|
|
|
|
|
|
|
4 |
import gradio as gr
|
5 |
-
import
|
6 |
|
7 |
-
from env import MODELS, TASK, ORG_NAME
|
8 |
|
9 |
def aggregate_results() -> list:
|
10 |
-
"""From the path of outputs and model list, extracts the current scores and stores them in a list of dicts with model, score, time as keys
|
11 |
-
"""
|
12 |
all_results = []
|
13 |
for org_model in MODELS:
|
14 |
try:
|
@@ -16,16 +16,12 @@ def aggregate_results() -> list:
|
|
16 |
ds = load_dataset(path, "results", split="latest")
|
17 |
config = json.loads(ds["config_general"][0])
|
18 |
results = json.loads(ds["results"][0])
|
19 |
-
|
20 |
# Model data
|
21 |
org, model = org_model.split("/")
|
22 |
|
23 |
-
cur_result = {
|
24 |
-
|
25 |
-
"Model": model,
|
26 |
-
"Duration (s)": config["end_time"] - config["start_time"]
|
27 |
-
}
|
28 |
-
|
29 |
# Extract the task from the JSON data
|
30 |
for k_metric, v_dict in results.items():
|
31 |
if k_metric != "all":
|
@@ -36,9 +32,9 @@ def aggregate_results() -> list:
|
|
36 |
print(f"Error processing {model} {ORG_NAME}: {e}")
|
37 |
return all_results
|
38 |
|
|
|
39 |
def extract_dataviz() -> Tuple[list, list]:
|
40 |
-
"""From the path of outputs and model list, extracts from the details the worst samples, best samples
|
41 |
-
"""
|
42 |
all_samples = {}
|
43 |
for org_model in MODELS:
|
44 |
try:
|
@@ -51,7 +47,6 @@ def extract_dataviz() -> Tuple[list, list]:
|
|
51 |
score = list(row["metrics"].values())[0]
|
52 |
prediction = row["predictions"][0]
|
53 |
|
54 |
-
|
55 |
# We store flattened samples in a dict
|
56 |
# ix -> ix, prompt, gold, model_score for each model, model_prediction for each model
|
57 |
# then 2 lists: model_scores and models, to aggreg more easily
|
@@ -62,7 +57,7 @@ def extract_dataviz() -> Tuple[list, list]:
|
|
62 |
"gold": gold[0] if isinstance(gold, list) else gold,
|
63 |
# A bit redundant, but put in their own boxes for simplicity of access later
|
64 |
"model_scores": [],
|
65 |
-
"models": []
|
66 |
}
|
67 |
if org_model not in all_samples[ix]["models"]:
|
68 |
all_samples[ix][f"{org_model}_score"] = row["metrics"]
|
@@ -73,14 +68,20 @@ def extract_dataviz() -> Tuple[list, list]:
|
|
73 |
except Exception as e:
|
74 |
print(f"Error processing {org_model}: {e}")
|
75 |
|
76 |
-
full_samples = sorted(
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
return easy_samples, hard_samples, full_samples
|
80 |
|
|
|
81 |
def samples_to_box_display(samples: list, example_index: int = 0):
|
82 |
-
"""Adapted from Nathan's code in https://huggingface.co/spaces/SaylorTwift/OpenEvalsModelDetails/
|
83 |
-
"""
|
84 |
if len(samples) == 0:
|
85 |
return "No samples in this category!"
|
86 |
outputs = []
|
@@ -88,21 +89,21 @@ def samples_to_box_display(samples: list, example_index: int = 0):
|
|
88 |
for model in sample["models"]:
|
89 |
try:
|
90 |
outputs.append({
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
})
|
97 |
except (KeyError, IndexError):
|
98 |
continue
|
99 |
-
|
100 |
if not outputs:
|
101 |
return "No results found for the selected combination."
|
102 |
-
|
103 |
# Create HTML output with all models
|
104 |
html_output = "<div style='max-width: 800px; margin: 0 auto;'>\n\n"
|
105 |
-
|
106 |
# Show gold answer at the top with distinct styling
|
107 |
if outputs:
|
108 |
html_output += "<div style='background: #e6f3e6; padding: 20px; border-radius: 10px; margin-bottom: 20px;'>\n"
|
@@ -111,15 +112,15 @@ def samples_to_box_display(samples: list, example_index: int = 0):
|
|
111 |
html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 0;'><code>{outputs[0]['Gold']}</code></pre>\n"
|
112 |
html_output += "</div>\n"
|
113 |
html_output += "</div>\n"
|
114 |
-
|
115 |
for output in outputs:
|
116 |
html_output += "<div style='background: #f5f5f5; padding: 20px; margin-bottom: 20px; border-radius: 10px;'>\n"
|
117 |
html_output += f"<h2 style='margin-top: 0;'>{output['Model']}</h2>\n"
|
118 |
-
|
119 |
# Format metrics as a clean table
|
120 |
html_output += "<details open style='margin-bottom: 15px;'>\n"
|
121 |
html_output += "<summary><h3 style='display: inline; margin: 0;'>Metrics</h3></summary>\n"
|
122 |
-
metrics = output[
|
123 |
if isinstance(metrics, str):
|
124 |
metrics = eval(metrics)
|
125 |
html_output += "<div style='overflow-x: auto;'>\n"
|
@@ -131,17 +132,17 @@ def samples_to_box_display(samples: list, example_index: int = 0):
|
|
131 |
html_output += "</table>\n"
|
132 |
html_output += "</div>\n"
|
133 |
html_output += "</details>\n\n"
|
134 |
-
|
135 |
# Handle prompt formatting with better styling
|
136 |
html_output += "<details style='margin-bottom: 15px;'>\n"
|
137 |
html_output += "<summary><h3 style='display: inline; margin: 0;'>Prompt</h3></summary>\n"
|
138 |
html_output += "<div style='background: #ffffff; padding: 15px; border-radius: 5px; margin-top: 10px;'>\n"
|
139 |
-
|
140 |
-
prompt_text = output[
|
141 |
if isinstance(prompt_text, list):
|
142 |
for i, msg in enumerate(prompt_text):
|
143 |
-
if isinstance(msg, dict) and
|
144 |
-
role = msg.get(
|
145 |
html_output += "<div style='margin-bottom: 10px;'>\n"
|
146 |
html_output += f"<strong>{role}:</strong>\n"
|
147 |
html_output += "<div style='overflow-x: auto;'>\n"
|
@@ -156,20 +157,20 @@ def samples_to_box_display(samples: list, example_index: int = 0):
|
|
156 |
html_output += "</div>\n"
|
157 |
else:
|
158 |
html_output += "<div style='overflow-x: auto;'>\n"
|
159 |
-
if isinstance(prompt_text, dict) and
|
160 |
html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 5px 0;'><code>{prompt_text['content']}</code></pre>\n"
|
161 |
else:
|
162 |
html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 5px 0;'><code>{prompt_text}</code></pre>\n"
|
163 |
html_output += "</div>\n"
|
164 |
-
|
165 |
html_output += "</div>\n"
|
166 |
html_output += "</details>\n\n"
|
167 |
-
|
168 |
# Style prediction output - now in a collapsible section
|
169 |
html_output += "<details open style='margin-bottom: 15px;'>\n"
|
170 |
html_output += "<summary><h3 style='display: inline; margin: 0;'>Prediction</h3>"
|
171 |
# Add word count in a muted style
|
172 |
-
word_count = len(output[
|
173 |
html_output += f"<span style='color: #666; font-size: 0.8em; margin-left: 10px;'>({word_count} words)</span>"
|
174 |
html_output += "</summary>\n"
|
175 |
html_output += "<div style='background: #ffffff; padding: 15px; border-radius: 5px; margin-top: 10px;'>\n"
|
@@ -179,20 +180,30 @@ def samples_to_box_display(samples: list, example_index: int = 0):
|
|
179 |
html_output += "</div>\n"
|
180 |
html_output += "</details>\n"
|
181 |
html_output += "</div>\n\n"
|
182 |
-
|
183 |
html_output += "</div>"
|
184 |
return html_output
|
185 |
|
|
|
186 |
def run_pipeline(samples_ix: int = 0):
|
187 |
results = aggregate_results()
|
188 |
best_samples, worst_samples, all_samples = extract_dataviz()
|
189 |
-
return
|
190 |
-
gr.
|
191 |
-
gr.HTML(
|
192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
|
194 |
def update_examples(samples_ix: int = 0):
|
195 |
best_samples, worst_samples, all_samples = extract_dataviz()
|
196 |
-
return
|
197 |
-
samples_to_box_display(
|
198 |
-
samples_to_box_display(
|
|
|
|
|
|
1 |
+
import json
|
|
|
2 |
from typing import Tuple
|
3 |
+
|
4 |
+
from env import TASK, MODELS, ORG_NAME
|
5 |
+
|
6 |
import gradio as gr
|
7 |
+
from datasets import Dataset, load_dataset
|
8 |
|
|
|
9 |
|
10 |
def aggregate_results() -> list:
|
11 |
+
"""From the path of outputs and model list, extracts the current scores and stores them in a list of dicts with model, score, time as keys"""
|
|
|
12 |
all_results = []
|
13 |
for org_model in MODELS:
|
14 |
try:
|
|
|
16 |
ds = load_dataset(path, "results", split="latest")
|
17 |
config = json.loads(ds["config_general"][0])
|
18 |
results = json.loads(ds["results"][0])
|
19 |
+
|
20 |
# Model data
|
21 |
org, model = org_model.split("/")
|
22 |
|
23 |
+
cur_result = {"Org": org, "Model": model, "Duration (s)": config["end_time"] - config["start_time"]}
|
24 |
+
|
|
|
|
|
|
|
|
|
25 |
# Extract the task from the JSON data
|
26 |
for k_metric, v_dict in results.items():
|
27 |
if k_metric != "all":
|
|
|
32 |
print(f"Error processing {model} {ORG_NAME}: {e}")
|
33 |
return all_results
|
34 |
|
35 |
+
|
36 |
def extract_dataviz() -> Tuple[list, list]:
|
37 |
+
"""From the path of outputs and model list, extracts from the details the worst samples, best samples"""
|
|
|
38 |
all_samples = {}
|
39 |
for org_model in MODELS:
|
40 |
try:
|
|
|
47 |
score = list(row["metrics"].values())[0]
|
48 |
prediction = row["predictions"][0]
|
49 |
|
|
|
50 |
# We store flattened samples in a dict
|
51 |
# ix -> ix, prompt, gold, model_score for each model, model_prediction for each model
|
52 |
# then 2 lists: model_scores and models, to aggreg more easily
|
|
|
57 |
"gold": gold[0] if isinstance(gold, list) else gold,
|
58 |
# A bit redundant, but put in their own boxes for simplicity of access later
|
59 |
"model_scores": [],
|
60 |
+
"models": [],
|
61 |
}
|
62 |
if org_model not in all_samples[ix]["models"]:
|
63 |
all_samples[ix][f"{org_model}_score"] = row["metrics"]
|
|
|
68 |
except Exception as e:
|
69 |
print(f"Error processing {org_model}: {e}")
|
70 |
|
71 |
+
full_samples = sorted(all_samples.values(), key=lambda r: r["ix"])
|
72 |
+
|
73 |
+
hard_samples = sorted(
|
74 |
+
[sample for sample in all_samples.values() if sum(sample["model_scores"]) == 0], key=lambda r: r["ix"]
|
75 |
+
)
|
76 |
+
easy_samples = sorted(
|
77 |
+
[sample for sample in all_samples.values() if sum(sample["model_scores"]) == len(sample["model_scores"])],
|
78 |
+
key=lambda r: r["ix"],
|
79 |
+
)
|
80 |
return easy_samples, hard_samples, full_samples
|
81 |
|
82 |
+
|
83 |
def samples_to_box_display(samples: list, example_index: int = 0):
|
84 |
+
"""Adapted from Nathan's code in https://huggingface.co/spaces/SaylorTwift/OpenEvalsModelDetails/"""
|
|
|
85 |
if len(samples) == 0:
|
86 |
return "No samples in this category!"
|
87 |
outputs = []
|
|
|
89 |
for model in sample["models"]:
|
90 |
try:
|
91 |
outputs.append({
|
92 |
+
"Model": model,
|
93 |
+
"Prediction": sample[f"{model}_prediction"],
|
94 |
+
"Prompt": sample["prompt"],
|
95 |
+
"Metrics": sample[f"{model}_score"],
|
96 |
+
"Gold": sample["gold"],
|
97 |
})
|
98 |
except (KeyError, IndexError):
|
99 |
continue
|
100 |
+
|
101 |
if not outputs:
|
102 |
return "No results found for the selected combination."
|
103 |
+
|
104 |
# Create HTML output with all models
|
105 |
html_output = "<div style='max-width: 800px; margin: 0 auto;'>\n\n"
|
106 |
+
|
107 |
# Show gold answer at the top with distinct styling
|
108 |
if outputs:
|
109 |
html_output += "<div style='background: #e6f3e6; padding: 20px; border-radius: 10px; margin-bottom: 20px;'>\n"
|
|
|
112 |
html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 0;'><code>{outputs[0]['Gold']}</code></pre>\n"
|
113 |
html_output += "</div>\n"
|
114 |
html_output += "</div>\n"
|
115 |
+
|
116 |
for output in outputs:
|
117 |
html_output += "<div style='background: #f5f5f5; padding: 20px; margin-bottom: 20px; border-radius: 10px;'>\n"
|
118 |
html_output += f"<h2 style='margin-top: 0;'>{output['Model']}</h2>\n"
|
119 |
+
|
120 |
# Format metrics as a clean table
|
121 |
html_output += "<details open style='margin-bottom: 15px;'>\n"
|
122 |
html_output += "<summary><h3 style='display: inline; margin: 0;'>Metrics</h3></summary>\n"
|
123 |
+
metrics = output["Metrics"]
|
124 |
if isinstance(metrics, str):
|
125 |
metrics = eval(metrics)
|
126 |
html_output += "<div style='overflow-x: auto;'>\n"
|
|
|
132 |
html_output += "</table>\n"
|
133 |
html_output += "</div>\n"
|
134 |
html_output += "</details>\n\n"
|
135 |
+
|
136 |
# Handle prompt formatting with better styling
|
137 |
html_output += "<details style='margin-bottom: 15px;'>\n"
|
138 |
html_output += "<summary><h3 style='display: inline; margin: 0;'>Prompt</h3></summary>\n"
|
139 |
html_output += "<div style='background: #ffffff; padding: 15px; border-radius: 5px; margin-top: 10px;'>\n"
|
140 |
+
|
141 |
+
prompt_text = output["Prompt"]
|
142 |
if isinstance(prompt_text, list):
|
143 |
for i, msg in enumerate(prompt_text):
|
144 |
+
if isinstance(msg, dict) and "content" in msg:
|
145 |
+
role = msg.get("role", "message").title()
|
146 |
html_output += "<div style='margin-bottom: 10px;'>\n"
|
147 |
html_output += f"<strong>{role}:</strong>\n"
|
148 |
html_output += "<div style='overflow-x: auto;'>\n"
|
|
|
157 |
html_output += "</div>\n"
|
158 |
else:
|
159 |
html_output += "<div style='overflow-x: auto;'>\n"
|
160 |
+
if isinstance(prompt_text, dict) and "content" in prompt_text:
|
161 |
html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 5px 0;'><code>{prompt_text['content']}</code></pre>\n"
|
162 |
else:
|
163 |
html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 5px 0;'><code>{prompt_text}</code></pre>\n"
|
164 |
html_output += "</div>\n"
|
165 |
+
|
166 |
html_output += "</div>\n"
|
167 |
html_output += "</details>\n\n"
|
168 |
+
|
169 |
# Style prediction output - now in a collapsible section
|
170 |
html_output += "<details open style='margin-bottom: 15px;'>\n"
|
171 |
html_output += "<summary><h3 style='display: inline; margin: 0;'>Prediction</h3>"
|
172 |
# Add word count in a muted style
|
173 |
+
word_count = len(output["Prediction"].split())
|
174 |
html_output += f"<span style='color: #666; font-size: 0.8em; margin-left: 10px;'>({word_count} words)</span>"
|
175 |
html_output += "</summary>\n"
|
176 |
html_output += "<div style='background: #ffffff; padding: 15px; border-radius: 5px; margin-top: 10px;'>\n"
|
|
|
180 |
html_output += "</div>\n"
|
181 |
html_output += "</details>\n"
|
182 |
html_output += "</div>\n\n"
|
183 |
+
|
184 |
html_output += "</div>"
|
185 |
return html_output
|
186 |
|
187 |
+
|
188 |
def run_pipeline(samples_ix: int = 0):
|
189 |
results = aggregate_results()
|
190 |
best_samples, worst_samples, all_samples = extract_dataviz()
|
191 |
+
return (
|
192 |
+
gr.Dataframe(Dataset.from_list(results).to_pandas(), visible=True),
|
193 |
+
gr.HTML(
|
194 |
+
samples_to_box_display(best_samples, samples_ix), label="Easiest samples (always found)", visible=True
|
195 |
+
),
|
196 |
+
gr.HTML(
|
197 |
+
samples_to_box_display(worst_samples, samples_ix), label="Hardest samples (always failed)", visible=True
|
198 |
+
),
|
199 |
+
gr.HTML(samples_to_box_display(all_samples, samples_ix), label="All samples", visible=True),
|
200 |
+
)
|
201 |
+
|
202 |
|
203 |
def update_examples(samples_ix: int = 0):
|
204 |
best_samples, worst_samples, all_samples = extract_dataviz()
|
205 |
+
return (
|
206 |
+
samples_to_box_display(best_samples, samples_ix),
|
207 |
+
samples_to_box_display(worst_samples, samples_ix),
|
208 |
+
samples_to_box_display(all_samples, samples_ix),
|
209 |
+
)
|