Spaces:
Sleeping
Sleeping
import asyncio | |
import os | |
import sys | |
import time | |
import gradio as gr | |
from datasets import load_dataset | |
from huggingface_hub import whoami | |
from loguru import logger | |
from pathlib import Path | |
from yourbench_space.config import generate_and_save_config | |
from yourbench_space.utils import ( | |
CONFIG_PATH, | |
UPLOAD_DIRECTORY, | |
SubprocessManager, | |
save_files, | |
update_dataset, | |
STAGES, | |
) | |
from yourbench_space.evaluation import create_eval_file, run_evaluations | |
from yourbench_space.leaderboard_space.env import HF_TOKEN | |
project_description = """ | |
# YourBench 🚀 | |
**Dynamic Benchmark Generation for Language Models** | |
Quickly create zero-shot benchmarks from your documents – keeping models accurate and adaptable | |
- 📖 [FAQ](#) | |
- 💻 [GitHub](https://github.com/huggingface/yourbench/tree/v0.2-alpha-space) | |
""" | |
UPLOAD_DIRECTORY.mkdir(parents=True, exist_ok=True) | |
logger.remove() | |
logger.add(sys.stderr, level="INFO") | |
command = ["uv", "run", "yourbench", f"--config={CONFIG_PATH}"] | |
manager = SubprocessManager(command) | |
docs_path = Path(__file__).parent / "docs.md" | |
citation_content = ( | |
docs_path.read_text().split("# Citation")[-1].strip() | |
if docs_path.exists() | |
else "# Citation\n\nDocumentation file not found." | |
) | |
def generate_and_return(hf_org, hf_prefix): | |
generate_and_save_config(hf_org, hf_prefix) | |
for _ in range(5): | |
if CONFIG_PATH.exists(): | |
break | |
time.sleep(0.5) | |
return ( | |
( | |
"✅ Config saved!", | |
gr.update(value=str(CONFIG_PATH), visible=True, interactive=True), | |
) | |
if CONFIG_PATH.exists() | |
else ( | |
"❌ Config generation failed.", | |
gr.update(visible=False, interactive=False), | |
) | |
) | |
final_dataset = None | |
def update_process_status(): | |
"""Update process status and include exit details if process has terminated""" | |
is_running = manager.is_running() | |
if not is_running: | |
exit_code, exit_reason = manager.get_exit_details() | |
status_text = f"Process Status: Stopped - {exit_reason}, exit code - {exit_code}" if exit_reason else "Process Status: Stopped" | |
return gr.update(value=False, label=status_text) | |
return gr.update(value=True, label="Process Status: Running") | |
def prepare_task(oauth_token: gr.OAuthToken | None, hf_dataset_name: str, _=None): | |
new_env = os.environ.copy() | |
if oauth_token: | |
new_env["HF_TOKEN"] = oauth_token.token | |
new_env["DATASET_PREFIX"] = hf_dataset_name | |
manager.start_process(custom_env=new_env) | |
def update_hf_org_dropdown(oauth_token: gr.OAuthToken | None): | |
if oauth_token is None: | |
return gr.Dropdown([], label="Organization") | |
try: | |
user_info = whoami(oauth_token.token) | |
org_names = [org["name"] for org in user_info.get("orgs", [])] | |
user_name = user_info.get("name", "Unknown User") | |
org_names.insert(0, user_name) | |
return gr.Dropdown(org_names, value=user_name, label="Organization") | |
except Exception as e: | |
return gr.Dropdown([], label="Organization") | |
def switch_to_run_generation_tab(): | |
return gr.Tabs(selected=1) | |
def enable_button(files): | |
return gr.update(interactive=bool(files)) | |
def run_evaluation_pipeline(oauth_token: gr.OAuthToken | None, org_name, eval_name): | |
# Test dataset existence | |
eval_ds_name = f"{org_name}/{eval_name}" | |
# Test dataset existence | |
try: | |
load_dataset(eval_ds_name, streaming=True) | |
except Exception as e: | |
print(f"Error while loading the dataset: {e}") | |
return | |
# Run evaluations | |
create_eval_file(eval_ds_name) | |
status = asyncio.run(run_evaluations(eval_ds_name=eval_ds_name, org=org_name)) | |
# Create space | |
from huggingface_hub import HfApi | |
repo_id = f"{org_name}/leaderboard_yourbench_{eval_ds_name.replace('/', '_')}" | |
api = HfApi() | |
try: | |
api.create_repo(repo_id=repo_id, repo_type="space", space_sdk="gradio") | |
api.upload_folder(repo_id=repo_id, repo_type="space", folder_path="src/") | |
api.add_space_secret(repo_id=repo_id, key="HF_TOKEN", value=HF_TOKEN) | |
api.add_space_variable(repo_id=repo_id, key="TASK", value=eval_ds_name) | |
api.add_space_variable(repo_id=repo_id, key="ORG_NAME", value=org_name) | |
except Exception as e: | |
status = "Evaluation" + status + "\nLeaderboard creation:" + e | |
return status | |
with gr.Blocks(theme=gr.themes.Default()) as app: | |
gr.Markdown(project_description) | |
with gr.Tabs() as tabs: | |
with gr.Tab("Setup", id=0): | |
with gr.Row(): | |
with gr.Column(): | |
login_btn = gr.LoginButton() | |
with gr.Accordion("Hugging Face Settings"): | |
hf_org_dropdown = gr.Dropdown( | |
choices=[], label="Organization", allow_custom_value=True | |
) | |
app.load( | |
update_hf_org_dropdown, inputs=None, outputs=hf_org_dropdown | |
) | |
hf_dataset_name = gr.Textbox( | |
label="Dataset name", | |
value="yourbench", | |
info="Name of your new evaluation dataset", | |
) | |
with gr.Accordion("Upload documents"): | |
file_input = gr.File( | |
label="Upload text files", | |
file_count="multiple", | |
file_types=[".txt", ".md", ".html", ".pdf"], | |
) | |
output = gr.Textbox(label="Log") | |
file_input.upload( | |
lambda files: save_files([file.name for file in files]), | |
file_input, | |
output, | |
) | |
with gr.Row(): | |
preview_button = gr.Button("Generate New Config", interactive=False) | |
log_message = gr.Textbox(label="Log Message", visible=True) | |
download_button = gr.File( | |
label="Download Config", visible=False, interactive=False | |
) | |
file_input.change(enable_button, inputs=file_input, outputs=preview_button) | |
preview_button.click( | |
generate_and_return, | |
inputs=[hf_org_dropdown, hf_dataset_name], | |
outputs=[log_message, download_button], | |
) | |
preview_button.click( | |
switch_to_run_generation_tab, | |
inputs=None, | |
outputs=tabs, | |
) | |
with gr.Tab("Run Generation", id=1): | |
with gr.Row(): | |
start_button = gr.Button("Start Task") | |
start_button.click(prepare_task, inputs=[login_btn, hf_dataset_name]) | |
stop_button = gr.Button("Stop Task") | |
stop_button.click(manager.stop_process) | |
kill_button = gr.Button("Kill Task") | |
kill_button.click(manager.kill_process) | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Accordion("Log Output", open=True): | |
log_output = gr.Code(language=None, lines=20, interactive=False) | |
with gr.Row(): | |
process_status = gr.Checkbox(label="Process Status", interactive=False) | |
status_timer = gr.Timer(1.0, active=True) | |
status_timer.tick(update_process_status, outputs=process_status) | |
with gr.Column(): | |
with gr.Accordion("Stages", open=True): | |
stages_table = gr.CheckboxGroup( | |
choices=STAGES, | |
value=[], | |
label="Pipeline Stages Completed", | |
interactive=False, | |
) | |
with gr.Accordion("Ingestion"): | |
ingestion_df = gr.DataFrame() | |
with gr.Accordion("Summarization"): | |
summarization_df = gr.DataFrame() | |
with gr.Accordion("Single-Hop"): | |
single_hop = gr.DataFrame() | |
with gr.Accordion("Answer Generation"): | |
answers_df = gr.DataFrame() | |
stages_table.change( | |
update_dataset, inputs=[stages_table, hf_org_dropdown, hf_dataset_name], outputs=[ingestion_df, summarization_df, single_hop, answers_df] | |
) | |
log_timer = gr.Timer(1.0, active=True) | |
log_timer.tick( | |
manager.read_and_get_output, outputs=[log_output, stages_table] | |
) | |
with gr.Tab("Evaluate", id=2): | |
with gr.Row(): | |
btn_launch_evals = gr.Button("Launch evaluations") | |
status = gr.Textbox(label="Status") | |
btn_launch_evals.click(run_evaluation_pipeline, [hf_org_dropdown, hf_dataset_name], status) | |
app.launch(allowed_paths=["/app"]) | |