Spaces:
Sleeping
Sleeping
File size: 12,338 Bytes
5289522 089a447 5289522 ea047ad 5289522 ea047ad f05dc8f ea047ad 570d85c ea047ad 3adea5e bae4131 089a447 ea047ad 089a447 ea047ad f05dc8f ea047ad 50871c5 089a447 50871c5 133c6d8 50871c5 ea047ad 50871c5 7ccf9d4 5289522 9e36858 7ccf9d4 3adea5e 133c6d8 5289522 7ccf9d4 ea047ad 089a447 9f37bbf 570d85c 67741f2 ea047ad 67741f2 570d85c 67741f2 ea047ad bbfe2ca ea047ad 5289522 fdfafe5 78afa9e fdfafe5 78afa9e 133c6d8 fdfafe5 133c6d8 ea047ad 133c6d8 50871c5 133c6d8 50871c5 133c6d8 50871c5 ea047ad 133c6d8 ea047ad 9f37bbf 133c6d8 9f37bbf 133c6d8 8c14d95 133c6d8 791ccdb 133c6d8 50871c5 133c6d8 ea047ad 5289522 133c6d8 3adea5e 133c6d8 8c14d95 ea047ad 5289522 25580aa 5289522 bae4131 5289522 25580aa ea047ad 25580aa 5289522 089a447 25580aa 5289522 089a447 5289522 089a447 25580aa ea047ad 25580aa ea047ad 5289522 25580aa ea047ad 25580aa 5289522 7ccf9d4 5289522 25580aa ea047ad 25580aa 5289522 7ccf9d4 25580aa ea047ad 25580aa ea047ad 25580aa 50871c5 974f602 ea047ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
import io
import os
import re
import shutil
import pathlib
import subprocess
from typing import List, Union, Optional
from ruamel.yaml.comments import CommentedMap, CommentedSeq
import pandas as pd
from loguru import logger
import gradio as gr
from datasets import load_dataset
from yourbench_space import PATH
STAGES = [
"ingestion",
"upload_ingest_to_hub",
"summarization",
"chunking",
"single_shot_question_generation",
"multi_hop_question_generation",
"lighteval",
]
STAGE_DISPLAY_MAP = {
"ingestion": "Process Input Docs",
"upload_ingest_to_hub": "Upload Dataset to Hub",
"summarization": "Summarize Documents",
"chunking": "Chunk Documents",
"single_shot_question_generation": "Generate Single Shot Questions",
"multi_hop_question_generation": "Generate Multi Hop Questions",
"lighteval": "Generate Lighteval Subset",
}
def to_commentable_yaml(obj):
"""
Recursively converts standard Python dicts and lists into
ruamel.yaml's CommentedMap and CommentedSeq so that comments
can be attached when dumping YAML
"""
# Convert dict to CommentedMap with recursively processed values
if isinstance(obj, dict):
return CommentedMap({k: to_commentable_yaml(v) for k, v in obj.items()})
# Convert list to CommentedSeq with recursively processed elements
elif isinstance(obj, list):
return CommentedSeq([to_commentable_yaml(i) for i in obj])
# Return non-container values as-is
return obj
def map_stage_names(stages: list[str]) -> list[str]:
return [STAGE_DISPLAY_MAP.get(stage, stage) for stage in stages]
def is_running_locally() -> bool:
"""
Returns True if Gradio is running locally, False if it's running in a Hugging Face Space.
"""
return os.getenv("SPACE_ID") is None # SPACE_ID is set in Hugging Face Spaces
def save_files(oauth_token: gr.OAuthToken | None, session_state: gr.State, files: List[pathlib.Path]) -> str:
"""Save uploaded files to the UPLOAD_DIRECTORY/uuid safely"""
if oauth_token is None and not is_running_locally():
gr.Warning("You need to log in to use this Space")
return
saved_paths = []
for file in [file.name for file in files]:
try:
source_path = pathlib.Path(file)
upload_directory_uuid = pathlib.Path(f"{PATH}/{session_state.value}/uploaded_files")
# Ensure the upload directory exists
upload_directory_uuid.mkdir(parents=True, exist_ok=True)
destination_path = upload_directory_uuid / source_path.name
if not source_path.exists():
print(f"File not found: {source_path}")
continue # Skip missing files
shutil.move(str(source_path), str(destination_path))
saved_paths.append(str(destination_path))
except Exception as e:
print(f"Error moving file {file}: {e}")
return f"Files saved to: {', '.join(saved_paths)}" if saved_paths else "No files were saved"
def update_dataset(stages: list, hf_org: str, hf_prefix: str, oauth_token: gr.OAuthToken):
"""
Updates the dataset based on the provided stages and dataset configuration.
"""
ingestion_df = pd.DataFrame()
summarization_df = pd.DataFrame()
single_shot_df = pd.DataFrame()
multi_hop_df = pd.DataFrame()
lighteval_df = pd.DataFrame()
# Construct dataset name from config
dataset_name = f"{hf_org}/{hf_prefix}"
if STAGE_DISPLAY_MAP["upload_ingest_to_hub"] in stages:
ingestion_ds = load_dataset(
dataset_name, name="ingested", split="train", streaming=True, token=oauth_token.token
).select_columns("document_text")
ingestion_df = pd.DataFrame(ingestion_ds.take(1))
if STAGE_DISPLAY_MAP["summarization"] in stages:
summarization_ds = load_dataset(
dataset_name, name="summarized", split="train", streaming=True, token=oauth_token.token
).select_columns(["document_summary", "summarization_model"])
summarization_df = pd.DataFrame(summarization_ds.take(5))
if STAGE_DISPLAY_MAP["single_shot_question_generation"] in stages:
single_shot_ds = load_dataset(
dataset_name,
name="single_shot_questions",
split="train",
streaming=True,
token=oauth_token.token,
).select_columns(["question", "self_answer", "estimated_difficulty"])
single_shot_df = pd.DataFrame(single_shot_ds.take(5))
if STAGE_DISPLAY_MAP["multi_hop_question_generation"] in stages:
multi_hop_ds = load_dataset(
dataset_name,
name="multi_hop_questions",
split="train",
streaming=True,
token=oauth_token.token,
).select_columns(["question", "self_answer", "estimated_difficulty"])
multi_hop_df = pd.DataFrame(multi_hop_ds.take(5))
if STAGE_DISPLAY_MAP["lighteval"] in stages:
lighteval_ds = load_dataset(
dataset_name, name="lighteval", split="train", streaming=True, token=oauth_token.token
).select_columns(["question", "ground_truth_answer", "question_category", "kind"])
lighteval_df = pd.DataFrame(lighteval_ds.take(5))
return (ingestion_df, summarization_df, single_shot_df, multi_hop_df, lighteval_df)
def should_enable_eval_tab(stages):
logger.info(f"Stages received: {stages}")
logger.info(f"Lighteval stage name: {STAGE_DISPLAY_MAP['lighteval']}")
return STAGE_DISPLAY_MAP["lighteval"] in stages
def on_generation_succsess(stages):
stages = stages or []
if STAGE_DISPLAY_MAP["lighteval"] in stages:
gr.Success("🌟 Your Dataset is ready for evaluation!")
return gr.update(selected=2), gr.update(interactive=True, visible=True)
return gr.update(), gr.update(interactive=False, visible=True)
class SubprocessManagerGroup:
"""Instanciates one manager per user (should be used as a singleton class)"""
def __init__(self):
self.managers: dict[str, SubprocessManager] = {}
@staticmethod
def grab_uuid(uid: Union[str, gr.State]):
"""If a gradio session state is provided, we pull the uuid from its value - else we assume the str is the uuid"""
if isinstance(uid, gr.State):
uid = uid.value
return uid
def create(self, uid: Union[str, gr.State]):
uid = SubprocessManagerGroup.grab_uuid(uid)
self.managers[uid] = SubprocessManager(uid)
def get(self, uid: Union[str, "gr.State"]) -> Optional["SubprocessManager"]:
uid = SubprocessManagerGroup.grab_uuid(uid)
return self.managers.get(uid)
def remove(self, uid: Union[str, gr.State]):
uid = SubprocessManagerGroup.grab_uuid(uid)
if manager := self.managers.get(uid):
manager.stop_process()
manager.clean_workdir()
del self.managers[uid]
def clean_workdir(self, uid: Union[str, gr.State]):
uid = SubprocessManagerGroup.grab_uuid(uid)
if manager := self.managers.get(uid):
manager.clean_workdir()
def start_process(self, uid: Union[str, gr.State], custom_env: dict | None):
uid = SubprocessManagerGroup.grab_uuid(uid)
self.managers[uid].start_process(custom_env=custom_env)
def stop_process(self, uid: Union[str, gr.State]):
uid = SubprocessManagerGroup.grab_uuid(uid)
self.managers[uid].stop_process()
def kill_process(self, uid: Union[str, gr.State]):
uid = SubprocessManagerGroup.grab_uuid(uid)
self.managers[uid].kill_process()
def read_and_get_output(self, uid: Union[str, gr.State]):
if uid is None:
return "", []
uid = SubprocessManagerGroup.grab_uuid(uid)
return self.managers[uid].read_and_get_output()
def is_running(self, uid: Union[str, gr.State]) -> bool:
uid = SubprocessManagerGroup.grab_uuid(uid)
if manager := self.managers.get(uid):
return manager.is_running()
return False
class SubprocessManager:
def __init__(self, session_uid: str):
self.session_uid = session_uid
self.path = pathlib.Path(f"{PATH}/{session_uid}")
self.path.mkdir(parents=True, exist_ok=True)
self.config_path = pathlib.Path(f"{self.path}/config.yml")
self.command = ["uv", "run", "yourbench", "run", "--config", str(self.config_path)]
self.process = None
self.output_stream = io.StringIO()
self.exit_code = None
def start_process(self, custom_env: dict | None):
"""Start the subprocess."""
if self.is_running():
logger.info("Process is already running")
return
self.output_stream = io.StringIO()
self.exit_code = None
try:
logger.info(f"Starting process with command: {' '.join(self.command)}")
self.process = subprocess.Popen(
self.command,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT, # Combine stderr with stdout
text=True,
bufsize=1,
start_new_session=True,
env=custom_env,
)
os.set_blocking(self.process.stdout.fileno(), False)
logger.info(f"Started process with PID: {self.process.pid}")
except Exception as e:
logger.error(f"Failed to start process: {str(e)}")
return
def read_and_get_output(self):
"""Read subprocess output, capture it, and return log and completed stages."""
current_output = ""
completed_stages = []
if self.process and self.process.stdout:
try:
while True:
line = self.process.stdout.readline()
if line:
self.output_stream.write(line)
else:
break
except BlockingIOError:
pass
current_output = self.output_stream.getvalue()
completed_stages = list(set(re.findall(r"Completed stage: '([^']*)'", current_output)))
return current_output, map_stage_names(completed_stages)
def clean_workdir(self):
shutil.rmtree(self.path, ignore_errors=True)
def stop_process(self):
"""Terminate the subprocess."""
if not self.is_running():
logger.info("Process is not running")
return
logger.info("Sending SIGTERM to the Process")
try:
self.process.terminate()
self.exit_code = self.process.wait(timeout=5) # Wait up to 5 seconds for process to terminate
logger.info(f"Process terminated by user with exit code {self.exit_code}")
except subprocess.TimeoutExpired:
logger.warning("Process did not terminate within timeout, sending SIGKILL")
self.kill_process()
def kill_process(self):
"""Forcefully kill the subprocess"""
if not self.is_running():
logger.info("Process is not running")
return
logger.info("Sending SIGKILL to the Process")
try:
self.process.kill()
self.exit_code = self.process.wait(timeout=5) # Wait up to 5 seconds for process to be killed
logger.info(f"Process killed by user with exit code {self.exit_code}")
except subprocess.TimeoutExpired:
logger.error("Process could not be killed within timeout")
def is_running(self):
"""Check if the subprocess is still running"""
if self.process is None:
return False
return self.process.poll() is None
def get_exit_details(self):
"""Return exit code and reason if process has terminated"""
if self.process is None:
return None, "Process was never started"
if self.is_running():
return None, "Process is still running"
if self.exit_code is not None and self.exit_code != 0:
return self.exit_code, "Process exited abnormaly"
return self.exit_code, "Process exited normaly"
def __del__(self):
"""Stop the process when object is deleted"""
if self.process:
self.process.kill()
self.clean_workdir()
|