Spaces:
yourbench
/
Running on CPU Upgrade

File size: 16,545 Bytes
bae4131
3119795
e3a07b7
133c6d8
ea047ad
 
67741f2
 
d1ed69b
ea047ad
 
fdfafe5
3adea5e
bae4131
ea047ad
133c6d8
bae4131
570d85c
ea047ad
 
fdfafe5
bae4131
ea047ad
 
 
6454c0e
e3a07b7
2d54755
 
e3a07b7
64a657c
 
2d54755
 
 
 
 
e3a07b7
 
3119795
 
 
133c6d8
 
ea047ad
50871c5
3119795
e3a07b7
089a447
 
 
 
 
e3a07b7
ea047ad
8c14d95
 
ea047ad
50871c5
7e88e41
ea047ad
 
 
8c14d95
 
7ccf9d4
 
133c6d8
c471c3c
133c6d8
c471c3c
133c6d8
 
974f602
ea047ad
089a447
7e88e41
133c6d8
089a447
bae4131
ea047ad
570d85c
 
ea047ad
8c14d95
25580aa
8c14d95
 
50871c5
8c14d95
50871c5
 
133c6d8
25580aa
ea047ad
25580aa
 
ea047ad
 
 
 
 
25580aa
ea047ad
25580aa
089a447
ea047ad
8c14d95
50871c5
ea047ad
50871c5
bae4131
50871c5
bae4131
 
50871c5
67741f2
8c14d95
bae4131
089a447
3d76e98
23510fc
3d76e98
4a9b060
3d76e98
 
 
 
 
 
7ccf9d4
3d76e98
7ccf9d4
23510fc
089a447
d50990e
 
 
 
7ccf9d4
 
bae4131
ea047ad
9562cba
67741f2
9562cba
 
 
8943d1f
 
 
 
 
 
 
67741f2
8943d1f
67741f2
9562cba
 
 
 
 
6f2e0a9
9562cba
 
 
ea047ad
67741f2
9562cba
67741f2
 
ea047ad
 
 
 
8943d1f
ea047ad
9562cba
 
 
 
8943d1f
9562cba
 
 
 
8943d1f
9562cba
 
 
 
 
 
 
 
 
 
ea047ad
 
 
9562cba
8943d1f
ea047ad
 
 
 
8943d1f
 
ea047ad
8943d1f
 
67741f2
9562cba
 
 
 
 
 
67741f2
bae4131
50871c5
c869604
4cba6f0
463fca1
4cba6f0
463fca1
4cba6f0
 
 
463fca1
 
 
 
 
 
 
 
 
 
 
4cba6f0
 
 
8cc9490
aaaafe3
8cc9490
c869604
fdfafe5
78afa9e
fdfafe5
78afa9e
8943d1f
fdfafe5
78afa9e
c869604
d50990e
c869604
133c6d8
e3a07b7
089a447
d50990e
54fa655
 
 
fdfafe5
 
 
 
 
 
d50990e
54fa655
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be6a58f
54fa655
ea047ad
54fa655
 
 
 
 
 
 
d50990e
54fa655
 
 
 
 
d50990e
54fa655
 
 
 
 
 
 
 
 
ea047ad
 
54fa655
 
 
fdfafe5
 
 
ea047ad
54fa655
 
 
 
ea047ad
54fa655
 
 
3adea5e
54fa655
 
 
3adea5e
54fa655
 
 
 
 
 
 
 
 
3adea5e
54fa655
 
 
 
3adea5e
54fa655
 
 
3adea5e
54fa655
 
3adea5e
54fa655
 
ea047ad
54fa655
 
 
 
 
 
 
 
 
 
 
 
 
 
fdfafe5
54fa655
fdfafe5
54fa655
 
 
 
 
 
 
570d85c
54fa655
9562cba
54fa655
fdfafe5
 
 
9562cba
 
78afa9e
 
 
 
9562cba
 
 
 
 
 
 
 
 
 
67741f2
aaaafe3
 
3adea5e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
import os
import sys
import time
import uuid
import asyncio
from pathlib import Path

from loguru import logger

import gradio as gr
from datasets import load_dataset
from huggingface_hub import HfApi, whoami
from yourbench_space import PATH
from yourbench_space.utils import (
    STAGES,
    SubprocessManagerGroup,
    save_files,
    update_dataset,
    map_stage_names,
    is_running_locally,
    on_generation_succsess,
)
from yourbench_space.config import generate_and_save_config
from yourbench_space.evaluation import run_evaluations, create_eval_file


project_description = """
# πŸš€ YourBench
### Dynamic Benchmark Generation from Your Documents

- Create zero-shot benchmarks from your documents β€” no manual labeling
- Evaluate top open models and publish a leaderboard in one click
- Run locally or explore the [source on GitHub](https://github.com/huggingface/yourbench)

⚠️ **Important:** This app uses your Hugging Face token for inference and uploads β€” you are responsible for any usage costs

Built with πŸ€— by the [Hugging Face OpenEvals team](https://huggingface.co/OpenEvals)
"""

logger.remove()
logger.add(sys.stderr, level="INFO")

# Global to store all managers per session
MANAGERS = SubprocessManagerGroup()
USER_ID_SESSION_MAP: dict[str, str] = {}


docs_path = Path(__file__).parent / "docs.md"
citation_content = (
    docs_path.read_text().split("# Citation")[-1].strip()
    if docs_path.exists()
    else "# Citation\n\nDocumentation file not found."
)


def generate_and_return(hf_org, hf_dataset_name, session_state: gr.State):
    manager = MANAGERS.get(session_state)
    if manager is None:  # should not be possible
        return (
            "❌ Config generation failed",
            gr.update(visible=False, interactive=False),
        )

    session_uid = session_state.value
    config_path = generate_and_save_config(hf_org, hf_dataset_name, session_uid, manager.config_path)
    for _ in range(5):
        time.sleep(0.5)
        if config_path.exists():
            gr.Success("βœ… Config generated successfully!")
            return (
                "βœ… Config saved successfully!",
                gr.update(value=str(config_path), visible=True, interactive=True),
            )

    gr.Error("Failed to generate config")
    return (
        "❌ Config generation failed",
        gr.update(visible=False, interactive=False),
    )


final_dataset = None


def update_process_status(session_state: gr.State):
    """Update process status and include exit details if process has terminated"""
    if session_state is None:
        return gr.update(value=False, label="Not running")

    manager = MANAGERS.get(session_state.value)
    if manager is None:
        return gr.update(value=False, label="Not running")

    is_running = manager.is_running()

    if not is_running:
        exit_code, exit_reason = manager.get_exit_details()
        status_text = (
            f"Process Status: Stopped - {exit_reason}, exit code - {exit_code}"
            if exit_reason
            else "Process Status: Stopped"
        )
        return gr.update(value=False, label=status_text)

    return gr.update(value=True, label="Process Status: Running")


def prepare_task(session_uid: str, oauth_token: gr.OAuthToken | None, hf_dataset_name: str, _=None):
    if oauth_token is None and not is_running_locally():
        gr.Warning("You need to log in to use this Space")
        return
    new_env = os.environ.copy()

    if oauth_token:
        new_env["HF_TOKEN"] = oauth_token.token

    new_env["DATASET_PREFIX"] = hf_dataset_name
    MANAGERS.start_process(session_uid, custom_env=new_env)


def update_hf_org_dropdown(oauth_token: gr.OAuthToken | None):
    if oauth_token is None:
        return gr.Dropdown([], label="Organization")

    try:
        user_info = whoami(oauth_token.token)
        org_names = [org["name"] for org in user_info.get("orgs", [])]
        user_name = user_info.get("name", "Unknown User")
        org_names.insert(0, user_name)
        return gr.Dropdown(org_names, value=user_name, label="Organization")

    except Exception as e:
        return gr.Dropdown([], label="Organization")


def switch_to_run_generation_tab():
    return gr.Tabs(selected=1)


def enable_button(files):
    return gr.update(interactive=bool(files))


def run_evaluation_pipeline(oauth_token: gr.OAuthToken | None, org_name, eval_name, config_name="lighteval"):
    eval_ds_name = f"{org_name}/{eval_name}"
    repo_id = f"{org_name}/leaderboard_yourbench_{eval_ds_name.replace('/', '_')}"
    folder_path = str(Path(PATH) / "yourbench_space" / "leaderboard_space")

    new_env = os.environ.copy()
    if oauth_token:
        hf_token = oauth_token.token
        new_env["HF_TOKEN"] = hf_token
    else:
        hf_token = os.environ.get("HF_TOKEN")

    try:
        load_dataset(eval_ds_name, name=config_name, streaming=True, token=hf_token)
    except Exception as e:
        logger.error(f"Failed to load dataset '{eval_ds_name}': {e}")
        return "❌ Failed: Dataset loading error"

    try:
        create_eval_file(eval_ds_name)
        status = asyncio.run(run_evaluations(org=org_name, eval_ds_name=eval_ds_name, custom_env=new_env))
    except Exception as e:
        logger.error(f"Evaluation error: {e}")
        return f"❌ Failed: Evaluation error\n{e}"

    api = HfApi()
    space_was_regenerated = False

    try:
        api.create_repo(
            repo_id=repo_id,
            repo_type="space",
            space_sdk="gradio",
            token=hf_token,
        )
    except Exception as e:
        if "409" in str(e) and "already created this space repo" in str(e):
            logger.info(f"Space '{repo_id}' already exists. Deleting and regenerating it.")
            try:
                api.delete_repo(repo_id=repo_id, repo_type="space", token=hf_token)
                api.create_repo(
                    repo_id=repo_id,
                    repo_type="space",
                    space_sdk="gradio",
                    token=hf_token,
                )
                space_was_regenerated = True
            except Exception as delete_err:
                logger.error(f"Failed to delete and recreate space '{repo_id}': {delete_err}")
                return f"βœ… Evaluation succeeded\n❌ Failed: Could not recreate space\n{delete_err}"
        else:
            logger.error(f"Space creation error: {e}")
            return f"βœ… Evaluation succeeded\n❌ Failed: Space creation error\n{e}"

    try:
        api.upload_folder(
            repo_id=repo_id,
            repo_type="space",
            folder_path=folder_path,
            token=hf_token,
        )
        api.add_space_secret(
            repo_id=repo_id,
            key="HF_TOKEN",
            value=hf_token,
            token=hf_token,
        )
        api.add_space_variable(repo_id=repo_id, key="TASK", value=eval_ds_name, token=hf_token)
        api.add_space_variable(repo_id=repo_id, key="ORG_NAME", value=org_name, token=hf_token)
    except Exception as e:
        logger.error(f"Failed during space setup: {e}")
        return f"βœ… Evaluation succeeded\n❌ Failed: Space setup error\n{e}"

    if space_was_regenerated:
        return f"βœ… Evaluation succeeded\nπŸ” Space '{repo_id}' was regenerated successfully"
    return f"βœ… Evaluation and Space creation completed successfully for: {repo_id}"


def init_session(profile: gr.OAuthProfile | None):
    """Update session on load"""
    if is_running_locally():
        username = "local"
    elif profile:
        username = profile.username
    else:
        username = None

    local_uuid = USER_ID_SESSION_MAP.get(username, str(uuid.uuid4()))

    if manager := MANAGERS.get(local_uuid):
        if manager.is_running():
            logger.info(f"Found existing running session for {local_uuid}, restoring")
            return gr.State(local_uuid, delete_callback=lambda uid: MANAGERS.remove(uid))
        else:
            logger.info(f"Found existing stale session for {local_uuid}, starting new")
            MANAGERS.remove(local_uuid)
            local_uuid = str(uuid.uuid4())

    if username:
        USER_ID_SESSION_MAP[username] = local_uuid

    MANAGERS.create(local_uuid)
    logger.info(f"Started session for {local_uuid}")
    return gr.State(local_uuid, delete_callback=lambda uid: MANAGERS.remove(uid))


btn_launch_evals = gr.Button(
    "πŸš€ Launch Evaluation",
    visible=True,
    interactive=True,  # Start non-interactive
    variant="primary",
)

with gr.Blocks(theme=gr.themes.Default()) as app:
    session_state = gr.State()

    gr.Markdown(project_description)

    with gr.Tabs() as tabs:
        with gr.Tab("Choose Documents & Settings", id=0):
            with gr.Column():
                gr.Markdown("### πŸ“„ Choose your documents and settings")
                gr.Markdown(
                    "Upload your source documents that will form the knowledge base for your benchmark. Set a Hugging Face organization and dataset name."
                )
                gr.Markdown(
                    "This step also generates a config file for running the benchmark pipeline. You can download it to run YourBench locally."
                )

                with gr.Row():
                    with gr.Accordion("Hugging Face Settings"):
                        login_btn = gr.LoginButton()
                        hf_org_dropdown = gr.Dropdown(choices=[], label="Organization", allow_custom_value=True)
                        app.load(update_hf_org_dropdown, inputs=None, outputs=hf_org_dropdown)

                        hf_dataset_name = gr.Textbox(
                            label="Dataset name",
                            value="yourbench",
                            info="Name of your new evaluation dataset",
                        )

                    with gr.Accordion("Upload Files"):
                        file_input = gr.File(
                            label="Upload text files",
                            file_count="multiple",
                            file_types=[".txt", ".md", ".html", ".pdf"],
                        )
                        output = gr.Textbox(label="Log")
                        file_input.upload(
                            save_files,
                            inputs=[session_state, file_input],
                            outputs=output,
                        )
                        delete_button = gr.Button("Delete Uploaded Files", visible=False)

                preview_button = gr.Button("Generate New Config", interactive=False)
                log_message = gr.Textbox(label="Log Message", visible=True)
                download_button = gr.File(label="Download Config", visible=False, interactive=False)

                file_input.change(
                    lambda files: gr.update(visible=bool(files)),
                    inputs=file_input,
                    outputs=delete_button,
                )

                file_input.change(enable_button, inputs=file_input, outputs=preview_button)

                def clean_and_confirm(uid):
                    MANAGERS.clean_workdir(uid)
                    return (
                        "πŸ—‘οΈ All uploaded files have been deleted!",
                        gr.update(value=None),
                        gr.update(interactive=False),
                    )

                delete_button.click(
                    clean_and_confirm,
                    inputs=session_state,
                    outputs=[output, file_input, preview_button],
                )

                preview_button.click(
                    generate_and_return,
                    inputs=[hf_org_dropdown, hf_dataset_name, session_state],
                    outputs=[log_message, download_button],
                )
                preview_button.click(
                    switch_to_run_generation_tab,
                    inputs=None,
                    outputs=tabs,
                )

        with gr.Tab("Run Benchmark Pipeline", id=1):
            with gr.Column():
                gr.Markdown("### βš™οΈ Run the benchmark generation pipeline")
                gr.Markdown(
                    "Start the pipeline to process documents, generate questions, and build the private evaluation dataset. Watch logs, track progress, and preview the results."
                )

                with gr.Row():
                    start_button = gr.Button("Start Task")
                    stop_button = gr.Button("Stop Task")
                    kill_button = gr.Button("Kill Task")

                start_button.click(prepare_task, inputs=[session_state, login_btn, hf_dataset_name])
                stop_button.click(MANAGERS.stop_process, inputs=session_state)
                kill_button.click(MANAGERS.kill_process, inputs=session_state)

                process_status = gr.Checkbox(label="Process Status", interactive=False)
                status_timer = gr.Timer(2.0, active=True)
                status_timer.tick(update_process_status, inputs=session_state, outputs=process_status)

                with gr.Row():
                    with gr.Accordion("Stages", open=True):
                        stages_table = gr.CheckboxGroup(
                            choices=map_stage_names(STAGES),
                            value=[],
                            label="Pipeline Stages Completed",
                            container=False,
                            interactive=False,
                        )

                with gr.Row():
                    with gr.Column():
                        with gr.Accordion("Log Output", open=True):
                            log_output = gr.Code(language=None, lines=20, interactive=False)

                    with gr.Column():
                        with gr.Accordion("Ingestion Preview"):
                            ingestion_df = gr.DataFrame()

                        with gr.Accordion("Summarization Preview"):
                            summarization_df = gr.DataFrame()

                        with gr.Accordion("Single Shot Preview"):
                            single_shot_df = gr.DataFrame()

                        with gr.Accordion("Multi Hop Preview"):
                            multi_hop_df = gr.DataFrame()

                        with gr.Accordion("Lighteval Preview"):
                            lighteval_df = gr.DataFrame()
                    stages_table.change(
                        update_dataset,
                        inputs=[stages_table, hf_org_dropdown, hf_dataset_name],
                        outputs=[ingestion_df, summarization_df, single_shot_df, multi_hop_df, lighteval_df],
                    )

                    stages_table.change(
                        on_generation_succsess,
                        inputs=stages_table,
                        outputs=[tabs, btn_launch_evals],
                    )

                    # TODO: this timer should only be active when the second tab is passed to active for the first time
                    log_timer = gr.Timer(1.0, active=True)
                    log_timer.tick(
                        MANAGERS.read_and_get_output,
                        inputs=session_state,
                        outputs=[log_output, stages_table],
                    )

        with gr.Tab("Evaluate Models on Benchmark", id=2):
            with gr.Column():
                gr.Markdown("### πŸ§ͺ Evaluate models on your benchmark")
                gr.Markdown(
                    "Runs the evaluation with [Lighteval](https://github.com/huggingface/lighteval) on the resulted dataset using 5+ open models, then deploys a leaderboard as a Hugging Face Space under your org."
                )

                with gr.Row():
                    with gr.Column():
                        btn_launch_evals.render()
                    with gr.Column():
                        clear_status_btn = gr.Button("Clear", variant="secondary")

                with gr.Accordion("Evaluation Log", open=True):
                    eval_status = gr.Textbox(label="", lines=6, interactive=False, show_label=False)

                btn_launch_evals.click(
                    run_evaluation_pipeline,
                    [hf_org_dropdown, hf_dataset_name, gr.State("lighteval")],
                    eval_status,
                )
                clear_status_btn.click(lambda: "", outputs=eval_status)

    app.load(init_session, outputs=session_state)

app.launch(allowed_paths=[PATH])