Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 8,075 Bytes
bae4131 3119795 d1ed69b bae4131 d1ed69b 5289522 bae4131 6454c0e d1ed69b 6454c0e 3119795 bae4131 23510fc bae4131 4a9b060 bae4131 4a9b060 a54ba55 23510fc bae4131 816857c bae4131 816857c 23510fc d1ed69b 23510fc 3119795 bae4131 23510fc bae4131 23510fc bae4131 23510fc 5289522 bae4131 23510fc 816857c bae4131 23510fc d1ed69b bae4131 d1ed69b bae4131 b975b7b bae4131 b975b7b d1ed69b 6454c0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
import os
import sys
import gradio as gr
from loguru import logger
from huggingface_hub import HfApi, whoami
from yourbench_space.config import generate_base_config, save_config
from yourbench_space.utils import (
CONFIG_PATH,
UPLOAD_DIRECTORY,
BASE_API_URLS,
AVAILABLE_MODELS,
DEFAULT_MODEL,
SubprocessManager,
save_files,
)
UPLOAD_DIRECTORY.mkdir(parents=True, exist_ok=True)
logger.remove()
logger.add(sys.stderr, level="INFO")
command = ["uv", "run", "yourbench", f"--config={CONFIG_PATH}"]
manager = SubprocessManager(command)
def prepare_task(oauth_token: gr.OAuthToken | None, model_token: str):
new_env = os.environ.copy()
# Override env token, when running in gradio space
if oauth_token:
new_env["HF_TOKEN"] = oauth_token.token
new_env["MODEL_API_KEY"] = model_token
manager.start_process(custom_env=new_env)
def update_hf_org_dropdown(oauth_token: gr.OAuthToken | None) -> str:
if oauth_token is None:
print(
"Please, deploy this on Spaces and log in to view the list of available organizations"
)
return list()
user_info = whoami(oauth_token.token)
org_names = [org["name"] for org in user_info["orgs"]]
user_name = user_info["name"]
org_names.insert(0, user_name)
return gr.Dropdown(org_names, value=user_name, label="Organization")
config_output = gr.Code(label="Generated Config", language="yaml")
model_name = gr.Dropdown(
label="Model Name",
value=DEFAULT_MODEL,
choices=AVAILABLE_MODELS,
allow_custom_value=True,
)
base_url = gr.Textbox(
label="Model API Base URL",
value=BASE_API_URLS["huggingface"],
info="Use a custom API base URL for Hugging Face Inference Endpoints",
)
def make_models(model_name=None):
if model_name is None:
model_name = DEFAULT_MODEL
ingestion_model = gr.Dropdown(
label="Model for ingestion",
choices=AVAILABLE_MODELS,
value=model_name,
interactive=False,
allow_custom_value=True,
)
summarization_model = gr.Dropdown(
label="Model for summarization",
choices=AVAILABLE_MODELS,
value=model_name,
interactive=False,
allow_custom_value=True,
)
single_shot_question_generation_model = gr.Dropdown(
label="Model for single shot question generation",
choices=AVAILABLE_MODELS,
value=model_name,
interactive=False,
allow_custom_value=True,
)
multi_hop_question_generation_model = gr.Dropdown(
label="Model for multi hop question generation",
choices=AVAILABLE_MODELS,
value=model_name,
interactive=False,
allow_custom_value=True,
)
answer_generation_model = gr.Dropdown(
label="Model for answer generation",
choices=AVAILABLE_MODELS,
value=model_name,
interactive=False,
allow_custom_value=True,
)
judge_answers_model = gr.Dropdown(
label="Model for answer judging",
choices=AVAILABLE_MODELS,
value=model_name,
interactive=False,
allow_custom_value=True,
)
return [
ingestion_model,
summarization_model,
single_shot_question_generation_model,
multi_hop_question_generation_model,
answer_generation_model,
judge_answers_model,
]
(
ingestion_model,
summarization_model,
single_shot_question_generation_model,
multi_hop_question_generation_model,
answer_generation_model,
judge_answers_model,
) = make_models()
with gr.Blocks() as app:
gr.Markdown("## YourBench Configuration")
with gr.Row():
login_btn = gr.LoginButton()
with gr.Tab("Configuration"):
with gr.Accordion("Hugging Face"):
hf_org_dropdown = gr.Dropdown(
list(),
label="Organization",
allow_custom_value=True,
)
app.load(update_hf_org_dropdown, inputs=None, outputs=hf_org_dropdown)
hf_dataset_prefix = gr.Textbox(
label="Dataset Prefix",
value="yourbench",
info="Prefix applied to all datasets",
)
private_dataset = gr.Checkbox(
label="Private Dataset",
value=True,
info="Create private datasets (recommended by default)",
)
with gr.Accordion("Model"):
model_name.render()
# TODO handle this better
model_name.change(
make_models,
inputs=[model_name],
outputs=[
ingestion_model,
summarization_model,
single_shot_question_generation_model,
multi_hop_question_generation_model,
answer_generation_model,
judge_answers_model,
],
)
provider = gr.Radio(
["huggingface", "openrouter", "openai"],
value="huggingface",
label="Inference Provider",
)
def set_base_url(provider):
return gr.Textbox(
label="Model API Base URL", value=BASE_API_URLS.get(provider, "")
)
provider.change(fn=set_base_url, inputs=provider, outputs=base_url)
model_api_key = gr.Textbox(label="Model API Key", type="password")
base_url.render()
max_concurrent_requests = gr.Radio(
[8, 16, 32], value=16, label="Max Concurrent Requests"
)
with gr.Accordion("Stages"):
ingestion_model.render()
summarization_model.render()
single_shot_question_generation_model.render()
multi_hop_question_generation_model.render()
answer_generation_model.render()
judge_answers_model.render()
preview_button = gr.Button("Generate New Config")
preview_button.click(
generate_base_config,
inputs=[
hf_org_dropdown,
model_name,
provider,
base_url,
model_api_key,
max_concurrent_requests,
hf_dataset_prefix,
private_dataset,
ingestion_model,
summarization_model,
single_shot_question_generation_model,
multi_hop_question_generation_model,
answer_generation_model,
judge_answers_model,
],
outputs=config_output,
)
with gr.Tab("Raw Configuration"):
config_output.render()
config_output.change(
fn=save_config,
inputs=[config_output],
outputs=[gr.Textbox(label="Save Status")],
)
with gr.Tab("Files"):
file_input = gr.File(
label="Upload text files",
file_count="multiple",
file_types=[".txt", ".md", ".html"],
)
output = gr.Textbox(label="Log")
file_input.upload(save_files, file_input, output)
with gr.Tab("Run Generation"):
log_output = gr.Code(
label="Log Output", language=None, lines=20, interactive=False
)
log_timer = gr.Timer(0.05, active=True)
log_timer.tick(manager.read_and_get_output, outputs=log_output)
with gr.Row():
process_status = gr.Checkbox(label="Process Status", interactive=False)
status_timer = gr.Timer(0.05, active=True)
status_timer.tick(manager.is_running, outputs=process_status)
with gr.Row():
start_button = gr.Button("Start Task")
start_button.click(prepare_task, inputs=[model_api_key])
stop_button = gr.Button("Stop Task")
stop_button.click(manager.stop_process)
kill_button = gr.Button("Kill Task")
kill_button.click(manager.kill_process)
app.launch()
|