Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 5,405 Bytes
bae4131 3119795 d1ed69b bae4131 d1ed69b 5289522 bae4131 6454c0e d1ed69b 6454c0e 3119795 bae4131 3d76e98 23510fc bae4131 3d76e98 4a9b060 3d76e98 23510fc bae4131 816857c bae4131 23510fc d1ed69b 23510fc 3119795 bae4131 23510fc bae4131 23510fc bae4131 23510fc 5289522 bae4131 3d76e98 bae4131 23510fc 816857c bae4131 23510fc d1ed69b bae4131 d1ed69b bae4131 b975b7b bae4131 b975b7b d1ed69b 6454c0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
import os
import sys
import gradio as gr
from loguru import logger
from huggingface_hub import HfApi, whoami
from yourbench_space.config import generate_base_config, save_config
from yourbench_space.utils import (
CONFIG_PATH,
UPLOAD_DIRECTORY,
BASE_API_URLS,
AVAILABLE_MODELS,
DEFAULT_MODEL,
SubprocessManager,
save_files,
)
UPLOAD_DIRECTORY.mkdir(parents=True, exist_ok=True)
logger.remove()
logger.add(sys.stderr, level="INFO")
command = ["uv", "run", "yourbench", f"--config={CONFIG_PATH}"]
manager = SubprocessManager(command)
def prepare_task(oauth_token: gr.OAuthToken | None, model_token: str):
new_env = os.environ.copy()
# Override env token, when running in gradio space
if oauth_token:
new_env["HF_TOKEN"] = oauth_token.token
new_env["MODEL_API_KEY"] = model_token
manager.start_process(custom_env=new_env)
def update_hf_org_dropdown(oauth_token: gr.OAuthToken | None):
if oauth_token is None:
print(
"Please, deploy this on Spaces and log in to view the list of available organizations"
)
return gr.Dropdown([], label="Organization")
try:
user_info = whoami(oauth_token.token)
org_names = [org["name"] for org in user_info.get("orgs", [])]
user_name = user_info.get("name", "Unknown User")
org_names.insert(0, user_name)
return gr.Dropdown(org_names, value=user_name, label="Organization")
except Exception as e:
print(f"Error retrieving user info: {e}")
return gr.Dropdown([], label="Organization")
config_output = gr.Code(label="Generated Config", language="yaml")
model_name = gr.Dropdown(
label="Model Name",
value=DEFAULT_MODEL,
choices=AVAILABLE_MODELS,
allow_custom_value=True,
)
base_url = gr.Textbox(
label="Model API Base URL",
value=BASE_API_URLS["huggingface"],
info="Use a custom API base URL for Hugging Face Inference Endpoints",
)
with gr.Blocks() as app:
gr.Markdown("## YourBench Configuration")
with gr.Row():
login_btn = gr.LoginButton()
with gr.Tab("Configuration"):
with gr.Accordion("Hugging Face"):
hf_org_dropdown = gr.Dropdown(
list(),
label="Organization",
allow_custom_value=True,
)
app.load(update_hf_org_dropdown, inputs=None, outputs=hf_org_dropdown)
hf_dataset_prefix = gr.Textbox(
label="Dataset Prefix",
value="yourbench",
info="Prefix applied to all datasets",
)
private_dataset = gr.Checkbox(
label="Private Dataset",
value=True,
info="Create private datasets (recommended by default)",
)
with gr.Accordion("Model"):
model_name.render()
provider = gr.Radio(
["huggingface", "openrouter", "openai"],
value="huggingface",
label="Inference Provider",
)
def set_base_url(provider):
return gr.Textbox(
label="Model API Base URL", value=BASE_API_URLS.get(provider, "")
)
provider.change(fn=set_base_url, inputs=provider, outputs=base_url)
model_api_key = gr.Textbox(label="Model API Key", type="password")
base_url.render()
max_concurrent_requests = gr.Radio(
[8, 16, 32], value=16, label="Max Concurrent Requests"
)
preview_button = gr.Button("Generate New Config")
preview_button.click(
generate_base_config,
inputs=[
hf_org_dropdown,
hf_dataset_prefix,
model_name,
provider,
base_url,
model_api_key,
max_concurrent_requests,
private_dataset,
],
outputs=config_output,
)
with gr.Tab("Raw Configuration"):
config_output.render()
config_output.change(
fn=save_config,
inputs=[config_output],
outputs=[gr.Textbox(label="Save Status")],
)
with gr.Tab("Files"):
file_input = gr.File(
label="Upload text files",
file_count="multiple",
file_types=[".txt", ".md", ".html"],
)
output = gr.Textbox(label="Log")
file_input.upload(save_files, file_input, output)
with gr.Tab("Run Generation"):
log_output = gr.Code(
label="Log Output", language=None, lines=20, interactive=False
)
log_timer = gr.Timer(0.05, active=True)
log_timer.tick(manager.read_and_get_output, outputs=log_output)
with gr.Row():
process_status = gr.Checkbox(label="Process Status", interactive=False)
status_timer = gr.Timer(0.05, active=True)
status_timer.tick(manager.is_running, outputs=process_status)
with gr.Row():
start_button = gr.Button("Start Task")
start_button.click(prepare_task, inputs=[model_api_key])
stop_button = gr.Button("Stop Task")
stop_button.click(manager.stop_process)
kill_button = gr.Button("Kill Task")
kill_button.click(manager.kill_process)
app.launch()
|