File size: 12,208 Bytes
bae4131
3119795
e3a07b7
133c6d8
ea047ad
 
67741f2
 
d1ed69b
ea047ad
 
 
3adea5e
bae4131
ea047ad
133c6d8
bae4131
570d85c
ea047ad
 
bae4131
ea047ad
 
 
6454c0e
e3a07b7
ea047ad
d50990e
e3a07b7
d50990e
ea047ad
7e88e41
e3a07b7
 
3119795
 
 
133c6d8
 
ea047ad
50871c5
3119795
e3a07b7
089a447
 
 
 
 
e3a07b7
ea047ad
8c14d95
 
ea047ad
50871c5
7e88e41
ea047ad
 
 
8c14d95
 
7ccf9d4
 
133c6d8
c471c3c
133c6d8
c471c3c
133c6d8
 
974f602
ea047ad
089a447
7e88e41
133c6d8
089a447
bae4131
ea047ad
570d85c
 
ea047ad
8c14d95
25580aa
8c14d95
 
50871c5
8c14d95
50871c5
 
133c6d8
25580aa
ea047ad
25580aa
 
ea047ad
 
 
 
 
25580aa
ea047ad
25580aa
089a447
ea047ad
8c14d95
50871c5
ea047ad
50871c5
bae4131
50871c5
bae4131
 
50871c5
67741f2
8c14d95
bae4131
089a447
3d76e98
23510fc
3d76e98
4a9b060
3d76e98
 
 
 
 
 
7ccf9d4
3d76e98
7ccf9d4
23510fc
089a447
d50990e
 
 
 
7ccf9d4
 
bae4131
ea047ad
67741f2
 
 
 
 
8ac5b07
67741f2
 
 
 
 
 
 
 
ea047ad
67741f2
 
 
 
ea047ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
133c6d8
 
67741f2
 
 
 
bae4131
50871c5
c869604
4cba6f0
463fca1
4cba6f0
463fca1
4cba6f0
 
 
463fca1
 
 
 
 
 
 
 
 
 
 
4cba6f0
 
 
8cc9490
aaaafe3
8cc9490
c869604
 
d50990e
c869604
133c6d8
e3a07b7
089a447
d50990e
 
 
be6a58f
67741f2
ea047ad
 
67741f2
be6a58f
 
 
 
 
d50990e
7e88e41
d50990e
 
 
25580aa
d50990e
 
 
9e36858
 
ea047ad
d50990e
ea047ad
be6a58f
 
 
ea047ad
 
 
 
 
 
be6a58f
d50990e
 
 
ea047ad
 
 
1d9fcdf
ea047ad
 
 
 
 
 
 
 
 
 
d50990e
 
133c6d8
d50990e
 
 
 
 
 
 
ea047ad
d50990e
3adea5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea047ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
570d85c
3adea5e
67741f2
 
 
 
 
aaaafe3
 
3adea5e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import os
import sys
import time
import uuid
import asyncio
from pathlib import Path

from loguru import logger

import gradio as gr
from datasets import load_dataset
from huggingface_hub import whoami
from yourbench_space import PATH
from yourbench_space.utils import (
    STAGES,
    SubprocessManagerGroup,
    save_files,
    update_dataset,
    map_stage_names,
    is_running_locally,
)
from yourbench_space.config import generate_and_save_config
from yourbench_space.evaluation import run_evaluations, create_eval_file


project_description = """
# YourBench 🚀
**Dynamic Benchmark Generation for Language Models**

Quickly create zero-shot benchmarks from your documents – keeping models accurate and adaptable
- 📖 [FAQ](#)
- 💻 [GitHub](https://github.com/huggingface/yourbench)
"""

logger.remove()
logger.add(sys.stderr, level="INFO")

# Global to store all managers per session
MANAGERS = SubprocessManagerGroup()
USER_ID_SESSION_MAP: dict[str, str] = {}


docs_path = Path(__file__).parent / "docs.md"
citation_content = (
    docs_path.read_text().split("# Citation")[-1].strip()
    if docs_path.exists()
    else "# Citation\n\nDocumentation file not found."
)


def generate_and_return(hf_org, hf_dataset_name, session_state: gr.State):
    manager = MANAGERS.get(session_state)
    if manager is None:  # should not be possible
        return (
            "❌ Config generation failed",
            gr.update(visible=False, interactive=False),
        )

    session_uid = session_state.value
    config_path = generate_and_save_config(hf_org, hf_dataset_name, session_uid, manager.config_path)
    for _ in range(5):
        time.sleep(0.5)
        if config_path.exists():
            gr.Success("✅ Config generated successfully!")
            return (
                "✅ Config saved successfully!",
                gr.update(value=str(config_path), visible=True, interactive=True),
            )

    gr.Error("Failed to generate config")
    return (
        "❌ Config generation failed",
        gr.update(visible=False, interactive=False),
    )


final_dataset = None


def update_process_status(session_state: gr.State):
    """Update process status and include exit details if process has terminated"""
    if session_state is None:
        return gr.update(value=False, label="Not running")

    manager = MANAGERS.get(session_state.value)
    if manager is None:
        return gr.update(value=False, label="Not running")

    is_running = manager.is_running()

    if not is_running:
        exit_code, exit_reason = manager.get_exit_details()
        status_text = (
            f"Process Status: Stopped - {exit_reason}, exit code - {exit_code}"
            if exit_reason
            else "Process Status: Stopped"
        )
        return gr.update(value=False, label=status_text)

    return gr.update(value=True, label="Process Status: Running")


def prepare_task(session_uid: str, oauth_token: gr.OAuthToken | None, hf_dataset_name: str, _=None):
    if oauth_token is None and not is_running_locally():
        gr.Warning("You need to log in to use this Space")
        return
    new_env = os.environ.copy()

    if oauth_token:
        new_env["HF_TOKEN"] = oauth_token.token

    new_env["DATASET_PREFIX"] = hf_dataset_name
    MANAGERS.start_process(session_uid, custom_env=new_env)


def update_hf_org_dropdown(oauth_token: gr.OAuthToken | None):
    if oauth_token is None:
        return gr.Dropdown([], label="Organization")

    try:
        user_info = whoami(oauth_token.token)
        org_names = [org["name"] for org in user_info.get("orgs", [])]
        user_name = user_info.get("name", "Unknown User")
        org_names.insert(0, user_name)
        return gr.Dropdown(org_names, value=user_name, label="Organization")

    except Exception as e:
        return gr.Dropdown([], label="Organization")


def switch_to_run_generation_tab():
    return gr.Tabs(selected=1)


def enable_button(files):
    return gr.update(interactive=bool(files))


def run_evaluation_pipeline(oauth_token: gr.OAuthToken | None, org_name, eval_name):
    # Test dataset existence
    eval_ds_name = f"{org_name}/{eval_name}"
    # Test dataset existence
    try:
        load_dataset(eval_ds_name, streaming=True, token=oauth_token.token)
    except Exception as e:
        print(f"Error while loading the dataset: {e}")
        return
    # Run evaluations
    create_eval_file(eval_ds_name)
    status = asyncio.run(run_evaluations(eval_ds_name=eval_ds_name, org=org_name))
    # Create space
    from huggingface_hub import HfApi

    repo_id = f"{org_name}/leaderboard_yourbench_{eval_ds_name.replace('/', '_')}"
    api = HfApi()

    try:
        api.create_repo(
            repo_id=repo_id,
            repo_type="space",
            space_sdk="gradio",
            token=oauth_token.token,
        )
        api.upload_folder(
            repo_id=repo_id,
            repo_type="space",
            folder_path="src/",
            token=oauth_token.token,
        )
        api.add_space_secret(
            repo_id=repo_id,
            key="HF_TOKEN",
            value=oauth_token.token,
            token=oauth_token.token,
        )
        api.add_space_variable(repo_id=repo_id, key="TASK", value=eval_ds_name, token=oauth_token.token)
        api.add_space_variable(repo_id=repo_id, key="ORG_NAME", value=org_name, token=oauth_token.token)
    except Exception as e:
        status = "Evaluation" + status + "\nLeaderboard creation:" + e
    return status


def init_session(profile: gr.OAuthProfile | None):
    """Update session on load"""
    if is_running_locally():
        username = "local"
    elif profile:
        username = profile.username
    else:
        username = None

    local_uuid = USER_ID_SESSION_MAP.get(username, str(uuid.uuid4()))

    if manager := MANAGERS.get(local_uuid):
        if manager.is_running():
            logger.info(f"Found existing running session for {local_uuid}, restoring")
            return gr.State(local_uuid, delete_callback=lambda uid: MANAGERS.remove(uid))
        else:
            logger.info(f"Found existing stale session for {local_uuid}, starting new")
            MANAGERS.remove(local_uuid)
            local_uuid = str(uuid.uuid4())

    if username:
        USER_ID_SESSION_MAP[username] = local_uuid

    MANAGERS.create(local_uuid)
    logger.info(f"Started session for {local_uuid}")
    return gr.State(local_uuid, delete_callback=lambda uid: MANAGERS.remove(uid))


with gr.Blocks(theme=gr.themes.Default()) as app:
    session_state = gr.State()

    gr.Markdown(project_description)

    with gr.Tabs() as tabs:
        with gr.Tab("Setup", id=0):
            with gr.Row():
                with gr.Accordion("Hugging Face Settings"):
                    login_btn = gr.LoginButton()
                    hf_org_dropdown = gr.Dropdown(choices=[], label="Organization", allow_custom_value=True)
                    app.load(update_hf_org_dropdown, inputs=None, outputs=hf_org_dropdown)

                    hf_dataset_name = gr.Textbox(
                        label="Dataset name",
                        value="yourbench",
                        info="Name of your new evaluation dataset",
                    )

                with gr.Accordion("Upload Files"):
                    file_input = gr.File(
                        label="Upload text files",
                        file_count="multiple",
                        file_types=[".txt", ".md", ".html", ".pdf"],
                    )
                    output = gr.Textbox(label="Log")
                    file_input.upload(
                        save_files,
                        inputs=[session_state, file_input],
                        outputs=output,
                    )
                    delete_button = gr.Button("Delete Uploaded Files", visible=False)

            preview_button = gr.Button("Generate New Config", interactive=False)
            log_message = gr.Textbox(label="Log Message", visible=True)
            download_button = gr.File(label="Download Config", visible=False, interactive=False)

            file_input.change(
                lambda files: gr.update(visible=bool(files)),
                inputs=file_input,
                outputs=delete_button,
            )

            file_input.change(enable_button, inputs=file_input, outputs=preview_button)

            def clean_and_confirm(uid):
                MANAGERS.clean_workdir(uid)
                return (
                    "🗑️ All uploaded files have been deleted!",
                    gr.update(value=None),
                    gr.update(interactive=False),
                )

            delete_button.click(
                clean_and_confirm,
                inputs=session_state,
                outputs=[output, file_input, preview_button],
            )

            preview_button.click(
                generate_and_return,
                inputs=[hf_org_dropdown, hf_dataset_name, session_state],
                outputs=[log_message, download_button],
            )
            preview_button.click(
                switch_to_run_generation_tab,
                inputs=None,
                outputs=tabs,
            )

        with gr.Tab("Run Generation", id=1):
            with gr.Row():
                start_button = gr.Button("Start Task")
                stop_button = gr.Button("Stop Task")
                kill_button = gr.Button("Kill Task")

            start_button.click(prepare_task, inputs=[session_state, login_btn, hf_dataset_name])
            stop_button.click(MANAGERS.stop_process, inputs=session_state)
            kill_button.click(MANAGERS.kill_process, inputs=session_state)

            process_status = gr.Checkbox(label="Process Status", interactive=False)
            status_timer = gr.Timer(2.0, active=True)
            status_timer.tick(update_process_status, inputs=session_state, outputs=process_status)

            with gr.Row():
                with gr.Accordion("Stages", open=True):
                    stages_table = gr.CheckboxGroup(
                        choices=map_stage_names(STAGES),
                        value=[],
                        label="Pipeline Stages Completed",
                        container=False,
                        interactive=False,
                    )

            with gr.Row():
                with gr.Column():
                    with gr.Accordion("Log Output", open=True):
                        log_output = gr.Code(language=None, lines=20, interactive=False)

                with gr.Column():
                    with gr.Accordion("Ingestion Preview"):
                        ingestion_df = gr.DataFrame()

                    with gr.Accordion("Summarization Preview"):
                        summarization_df = gr.DataFrame()

                    with gr.Accordion("Single Shot Preview"):
                        single_shot_df = gr.DataFrame()

                    with gr.Accordion("Multi Hop Preview"):
                        multi_hop_df = gr.DataFrame()

                    with gr.Accordion("Lighteval Preview"):
                        lighteval_df = gr.DataFrame()

                stages_table.change(
                    update_dataset,
                    inputs=[stages_table, hf_org_dropdown, hf_dataset_name],
                    outputs=[ingestion_df, summarization_df, single_shot_df, multi_hop_df, lighteval_df],
                )


                # TODO: this timer should only be active when the second tab is passed to active for the first time
                log_timer = gr.Timer(1.0, active=True)
                log_timer.tick(
                    MANAGERS.read_and_get_output,
                    inputs=session_state,
                    outputs=[log_output, stages_table],
                )

        with gr.Tab("Evaluate", id=2):
            with gr.Row():
                btn_launch_evals = gr.Button("Launch evaluations")
                status = gr.Textbox(label="Status")
            btn_launch_evals.click(run_evaluation_pipeline, [hf_org_dropdown, hf_dataset_name], status)

    app.load(init_session, outputs=session_state)

app.launch(allowed_paths=[PATH])