Spaces:
Running
Running
File size: 17,361 Bytes
2f5cf2f 6bf73a6 2f5cf2f 6bf73a6 2f5cf2f 6bf73a6 f1d76c0 2f5cf2f 6bf73a6 ed8326f 6bf73a6 2f5cf2f 68eb1ef f1d76c0 68eb1ef 2f5cf2f 6bf73a6 2f5cf2f 6bf73a6 3a71be4 6bf73a6 2f5cf2f 68eb1ef f1d76c0 2f5cf2f 68eb1ef 2f5cf2f f1d76c0 2f5cf2f f1d76c0 2f5cf2f f1d76c0 2f5cf2f f1d76c0 2f5cf2f 6bf73a6 2f5cf2f 6bf73a6 2f5cf2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 |
import os
from datetime import datetime
from pathlib import Path
import huggingface_hub
import jiwer
import pandas as pd
import requests
import streamlit as st
from huggingface_hub import HfFileSystem
from st_fixed_container import st_fixed_container
from visual_eval.evaluator import HebrewTextNormalizer
from visual_eval.visualization import render_visualize_jiwer_result_html
HF_API_TOKEN = None
try:
HF_API_TOKEN = st.secrets["HF_API_TOKEN"]
except FileNotFoundError:
HF_API_TOKEN = os.environ.get("HF_API_TOKEN")
has_api_token = HF_API_TOKEN is not None
known_datasets = [
("ivrit-ai/eval-d1:test:text", None, "ivrit_ai_eval_d1"),
("upai-inc/saspeech:test:text", None, "saspeech"),
("google/fleurs:test:transcription", "he_il", "fleurs"),
("mozilla-foundation/common_voice_17_0:test:sentence", "he", "common_voice_17"),
("imvladikon/hebrew_speech_kan:validation:sentence", None, "hebrew_speech_kan"),
]
# Initialize session state for audio cache if it doesn't exist
if "audio_cache" not in st.session_state:
st.session_state.audio_cache = {}
if "audio_preview_active" not in st.session_state:
st.session_state.audio_preview_active = {}
if "uploaded_file" not in st.session_state:
st.session_state.results_file = None
if "selected_entry_idx" not in st.session_state:
st.session_state.selected_entry_idx = 0
if "total_entry_count" not in st.session_state:
st.session_state.total_entry_count = 0
if "entry_page_size" not in st.session_state:
st.session_state.entry_page_size = 20
def get_current_page_slice():
ss = st.session_state
if ss.total_entry_count == 0:
return slice(0, 0)
page_first_entry = (
st.session_state.selected_entry_idx // ss.entry_page_size
) * ss.entry_page_size
page_last_entry = min(page_first_entry + ss.entry_page_size, ss.total_entry_count)
return slice(page_first_entry, page_last_entry)
def page_navigation():
ss = st.session_state
current_page_slice = get_current_page_slice()
has_next_page = current_page_slice.stop < ss.total_entry_count - 1
has_prev_page = current_page_slice.start >= ss.entry_page_size
col1, col2 = st.columns(2)
if col1.button("Prev Page", disabled=not has_prev_page):
ss.selected_entry_idx = current_page_slice.start - 1
st.rerun()
if col2.button("Next Page", disabled=not has_next_page):
ss.selected_entry_idx = current_page_slice.start + ss.entry_page_size
st.rerun()
def on_file_upload():
st.session_state.audio_cache = {}
st.session_state.audio_preview_active = {}
st.session_state.selected_entry_idx = 0
st.session_state.results_file = None
@st.cache_data
def get_leaderboard_result_csv_paths(root_search_path):
fs = HfFileSystem(token=HF_API_TOKEN)
found_files = fs.glob(f"{root_search_path}/*/*.csv")
found_files_relative_paths = [f.split(root_search_path)[1] for f in found_files]
return found_files_relative_paths
@st.dialog("View Leaderboard Results")
def choose_input_file_from_leaderboard():
if not has_api_token:
st.rerun()
root_search_path = "ivrit-ai/hebrew-transcription-leaderboard/results"
fsspec_spaces_root_search_path = f"spaces/{root_search_path}"
found_files_relative_paths = get_leaderboard_result_csv_paths(
fsspec_spaces_root_search_path
)
selected_file = st.selectbox(
"Select a CSV file from the leaderboard:",
found_files_relative_paths,
index=None,
)
# Get the selected file
if selected_file:
paths_part = Path(selected_file).parent
file_part = Path(selected_file).name
uploaded_file = huggingface_hub.hf_hub_url(
repo_id="ivrit-ai/hebrew-transcription-leaderboard",
subfolder=f"results{paths_part}",
filename=file_part,
repo_type="space",
)
on_file_upload()
st.session_state.results_file = uploaded_file
st.rerun()
@st.cache_data
def read_results_csv(uploaded_file):
with st.spinner("Loading results...", show_time=True):
results_df = pd.read_csv(uploaded_file)
return results_df
def display_rtl(html):
"""Render an RTL container with the provided HTML string"""
st.markdown(
f"""
<div dir="rtl" lang="he">
{html}
</div>
""",
unsafe_allow_html=True,
)
@st.cache_data
def calculate_final_metrics(uploaded_file, _df):
"""Calculate final metrics for all entries
Args:
uploaded_file: The uploaded file object (For cache hash gen)
_df: The dataframe containing the evaluation results (not included in cache hash)
Returns:
A dictionary containing the final metrics
"""
_df = _df.sort_values(by=["id"])
_df["reference_text"] = _df["reference_text"].fillna("")
_df["predicted_text"] = _df["predicted_text"].fillna("")
# convert to list of dicts
entries_data = _df.to_dict(orient="records")
htn = HebrewTextNormalizer()
# Calculate final metrics
results = jiwer.process_words(
[htn(entry["reference_text"]) for entry in entries_data],
[htn(entry["predicted_text"]) for entry in entries_data],
)
return results
def get_known_dataset_by_output_name(output_name):
for dataset in known_datasets:
if dataset[2] == output_name:
return dataset
return None
def get_dataset_entries_audio_urls(dataset, offset=0, max_entries=100):
if dataset is None or not has_api_token:
return None
dataset_repo_id, dataset_config, _ = dataset
if not dataset_config:
dataset_config = "default"
if ":" in dataset_repo_id:
dataset_repo_id, split, _ = dataset_repo_id.split(":")
else:
split = "test"
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}
api_query_params = {
"dataset": dataset_repo_id,
"config": dataset_config,
"split": split,
"offset": offset,
"length": max_entries,
}
query_params_str = "&".join([f"{k}={v}" for k, v in api_query_params.items()])
API_URL = f"https://datasets-server.huggingface.co/rows?{query_params_str}"
def query():
response = requests.get(API_URL, headers=headers)
return response.json()
data = query()
def get_audio_url(row):
audio_feature_list = row["row"]["audio"]
first_audio = audio_feature_list[0]
return first_audio["src"]
if "rows" in data and len(data["rows"]) > 0:
return [get_audio_url(row) for row in data["rows"]]
else:
return None
def get_audio_url_for_entry(
dataset, entry_idx, cache_neighbors=True, neighbor_range=20
):
"""
Get audio URL for a specific entry and optionally cache neighbors
Args:
dataset: Dataset tuple (repo_id, config, output_name)
entry_idx: Index of the entry to get audio URL for
cache_neighbors: Whether to cache audio URLs for neighboring entries
neighbor_range: Range of neighboring entries to cache
Returns:
Audio URL for the specified entry
"""
# Calculate the range of entries to load
if cache_neighbors:
start_idx = max(0, entry_idx - neighbor_range)
max_entries = neighbor_range * 2 + 1
else:
start_idx = entry_idx
max_entries = 1
# Get audio URLs for the range of entries
audio_urls = get_dataset_entries_audio_urls(dataset, start_idx, max_entries)
if not audio_urls:
return None
# Cache the audio URLs
for i, url in enumerate(audio_urls):
idx = start_idx + i
# Extract expiration time from URL if available
expires = None
if "expires=" in url:
try:
expires_param = url.split("expires=")[1].split("&")[0]
expires = datetime.fromtimestamp(int(expires_param))
except (ValueError, IndexError):
expires = None
st.session_state.audio_cache[idx] = {"url": url, "expires": expires}
# Return the URL for the requested entry
relative_idx = entry_idx - start_idx
if 0 <= relative_idx < len(audio_urls):
return audio_urls[relative_idx]
return None
def get_cached_audio_url(entry_idx):
"""
Get audio URL from cache if available and not expired
Args:
entry_idx: Index of the entry to get audio URL for
Returns:
Audio URL if available in cache and not expired, None otherwise
"""
if entry_idx not in st.session_state.audio_cache:
return None
cache_entry = st.session_state.audio_cache[entry_idx]
# Check if the URL is expired
if cache_entry["expires"] and datetime.now() > cache_entry["expires"]:
return None
return cache_entry["url"]
def main():
st.set_page_config(
page_title="ASR Evaluation Visualizer", page_icon="π€", layout="wide"
)
if not has_api_token:
st.warning("No Hugging Face API token found. Audio previews will not work.")
st.title("ASR Evaluation Visualizer")
# File uploader
uploaded_file = st.file_uploader(
"Upload evaluation results CSV",
type=["csv"],
on_change=on_file_upload,
key="uploaded_file",
)
if uploaded_file is not None:
st.session_state.results_file = uploaded_file
if uploaded_file is None:
st.write("Or:")
if st.button("Choose from leaderboard"):
choose_input_file_from_leaderboard()
if st.session_state.results_file is not None:
uploaded_file = st.session_state.results_file
# Load the data
try:
eval_results = read_results_csv(uploaded_file)
st.session_state.total_entry_count = len(eval_results)
st.success("File uploaded successfully!")
with st.sidebar:
# Toggle for calculating total metrics
show_total_metrics = st.toggle("Show total metrics", value=False)
if show_total_metrics:
total_metrics = calculate_final_metrics(uploaded_file, eval_results)
# Display total metrics in a nice format
with st.container():
st.metric("WER", f"{total_metrics.wer * 100:.4f}%")
st.table(
{
"Hits": total_metrics.hits,
"Subs": total_metrics.substitutions,
"Dels": total_metrics.deletions,
"Insrt": total_metrics.insertions,
}
)
# Toggle for normalized vs raw text
use_normalized = st.sidebar.toggle("Use normalized text", value=True)
# Create sidebar for entry selection
st.sidebar.header("Select Entry")
# Add Next/Prev buttons at the top of the sidebar
col1, col2 = st.sidebar.columns(2)
# Define navigation functions
def go_prev():
if st.session_state.selected_entry_idx > 0:
st.session_state.selected_entry_idx -= 1
def go_next():
if st.session_state.selected_entry_idx < len(eval_results) - 1:
st.session_state.selected_entry_idx += 1
# Add navigation buttons
col1.button("β Prev", on_click=go_prev, use_container_width=True)
col2.button("Next β", on_click=go_next, use_container_width=True)
# Use a container for better styling
entry_container = st.sidebar.container()
with entry_container:
page_navigation()
st.write(f"Total entries: {st.session_state.total_entry_count}")
# Create a data table with entries and their WER
entries_data = []
for i in range(len(eval_results)):
wer_value = eval_results.iloc[i].get("wer", 0)
# Format WER as percentage
wer_formatted = (
f"{wer_value*100:.2f}%"
if isinstance(wer_value, (int, float))
else wer_value
)
entries_data.append({"Entry": f"Entry #{i+1}", "WER": wer_formatted})
# Create a selection mechanism using radio buttons that look like a table
st.sidebar.write("Select an entry")
# Create a radio button for each entry, styled to look like a table row
current_page_slice = get_current_page_slice()
entry_container.radio(
"Select an entry",
options=list(range(len(eval_results))[current_page_slice]),
format_func=lambda i: f"Entry #{i+1} ({entries_data[i]['WER']})",
label_visibility="collapsed",
key="selected_entry_idx",
)
# Use the selected entry
selected_entry = st.session_state.selected_entry_idx
# Get the text columns based on the toggle
if use_normalized and "norm_reference_text" in eval_results.columns:
ref_col, hyp_col = "norm_reference_text", "norm_predicted_text"
else:
ref_col, hyp_col = "reference_text", "predicted_text"
# Get the reference and hypothesis texts
ref, hyp = eval_results.iloc[selected_entry][[ref_col, hyp_col]].values
st.header("Visualization")
# Check if the CSV file is from a known dataset
dataset_name = None
# If no dataset column, try to infer from filename
if uploaded_file is not None:
if isinstance(uploaded_file, str):
filename_stem = Path(uploaded_file).stem
else:
filename_stem = Path(uploaded_file.name).stem
dataset_name = filename_stem
if not dataset_name and "dataset" in eval_results.columns:
dataset_name = eval_results.iloc[selected_entry]["dataset"]
# Get the known dataset if available
known_dataset = get_known_dataset_by_output_name(dataset_name)
# Display audio preview button if from a known dataset
if known_dataset:
# Check if we have the audio URL in cache
audio_url = get_cached_audio_url(selected_entry)
audio_preview_active = st.session_state.audio_preview_active.get(
selected_entry, False
)
preview_audio = False
if not audio_preview_active:
# Create a button to preview audio
preview_audio = st.button("Preview Audio", key="preview_audio")
if preview_audio or audio_url:
st.session_state.audio_preview_active[selected_entry] = True
with st_fixed_container(
mode="sticky", position="top", border=True, margin=0
):
# If button clicked or we already have the URL, get/use the audio URL
if not audio_url:
with st.spinner("Loading audio..."):
audio_url = get_audio_url_for_entry(
known_dataset, selected_entry
)
# Display the audio player in the sticky container at the top
if audio_url:
st.audio(audio_url)
else:
st.error("Failed to load audio for this entry.")
# Display the visualization
html = render_visualize_jiwer_result_html(ref, hyp)
display_rtl(html)
# Display metadata
st.header("Metadata")
metadata_cols = [
"metadata_uuid",
"model",
"dataset",
"dataset_split",
"engine",
]
metadata = eval_results.iloc[selected_entry][metadata_cols]
# Create a DataFrame for better display
metadata_df = pd.DataFrame(
{"Field": metadata_cols, "Value": metadata.values}
)
st.table(metadata_df)
# If we have audio URL, display it in the sticky container
if "audio_url" in locals() and audio_url:
pass # CSS is now applied globally
except Exception as e:
st.error(f"Error processing file: {str(e)}")
else:
st.info(
"Please upload an evaluation results CSV file to visualize the results."
)
st.markdown(
"""
### Expected CSV Format
The CSV should have the following columns:
- id
- reference_text
- predicted_text
- norm_reference_text
- norm_predicted_text
- wer
- wil
- substitutions
- deletions
- insertions
- hits
- metadata_uuid
- model
- dataset
- dataset_split
- engine
"""
)
if __name__ == "__main__":
main()
|